Title: | Nonparametric Modeling and Monitoring of Spatio-Temporal Data |
---|---|
Description: | Spatio-temporal data have become increasingly popular in many research fields. Such data often have complex structures that are difficult to describe and estimate. This package provides reliable tools for modeling complicated spatio-temporal data. It also includes tools of online process monitoring to detect possible change-points in a spatio-temporal process over time. More specifically, the package implements the spatio-temporal mean estimation procedure described in Yang and Qiu (2018) <doi:10.1002/sim.7622>, the spatio-temporal covariance estimation procedure discussed in Yang and Qiu (2019) <doi:10.1002/sim.8315>, the three-step method for the joint estimation of spatio-temporal mean and covariance functions suggested by Yang and Qiu (2022) <doi:10.1007/s10463-021-00787-2>, the spatio-temporal disease surveillance method discussed in Qiu and Yang (2021) <doi:10.1002/sim.9150> that can accommodate the covariate effect, the spatial-LASSO-based process monitoring method proposed by Qiu and Yang (2023) <doi:10.1080/00224065.2022.2081104>, and the online spatio-temporal disease surveillance method described in Yang and Qiu (2020) <doi:10.1080/24725854.2019.1696496>. |
Authors: | Kai Yang [aut, cre], Peihua Qiu [ctb] |
Maintainer: | Kai Yang <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0.3 |
Built: | 2024-12-23 06:35:25 UTC |
Source: | CRAN |
Spatio-temporal data have become increasingly popular in many research fields. Such data often have complex structures that are difficult to describe and estimate. This package provides reliable tools for modeling complicated spatio-temporal data. It also includes tools of online process monitoring to detect possible change-points in a spatio-temporal process over time. More specifically, it implements the nonparametric spatio-temporal data modeling methods described in Yang and Qiu (2018, 2019, and 2022), as well as the online spatio-temporal process monitoring methods discussed in Qiu and Yang (2021 and 2023) and Yang and Qiu (2020).
Kai Yang [email protected] and Peihua Qiu Maintainer: Kai Yang <[email protected]>
Qiu, P. and Yang, K. (2021). Effective Disease Surveillance by Using Covariate Information. Statistics in Medicine, 40, 5725-5745.
Qiu, P. and Yang, K. (2023). Spatio-Temporal Process Monitoring Using Exponentially Weighted Spatial LASSO. Journal of Quality Technology, 55, 163-180.
Yang, K. and Qiu, P. (2018). Spatio-Temporal Incidence Rate Data Analysis by Nonparametric Regression. Statistics in Medicine, 37, 2094-2107.
Yang, K. and Qiu, P. (2019). Nonparametric Estimation of the Spatio-Temporal Covariance Structure. Statistics in Medicine, 38, 4555-4565.
Yang, K. and Qiu, P. (2020). Online Sequential Monitoring of Spatio-Temporal Disease Incidence Rates. IISE Transactions, 52, 1218-1233.
Yang, K. and Qiu, P. (2022). A Three-Step Local Smoothing Approach for Estimating the Mean and Covariance Functions of Spatio-Temporal Data. Annals of the Institute of Statistical Mathematics, 74, 49-68.
The spatio-temporal covariance function is estimated by the
weighted moment estimation method in Yang and Qiu (2019). The function
cv_mspe
is developed to select the bandwidths (gt,gs)
used
in the estimation of the spatio-temporal covariance function.
cv_mspe(y, st, gt = NULL, gs = NULL)
cv_mspe(y, st, gt = NULL, gs = NULL)
y |
A vector of length |
st |
An |
gt |
A sequence of temporal kernel bandwidth |
gs |
A sequence of spatial kernel bandwidth |
bandwidth |
A matrix containing all the bandwidths
( |
mspe |
The mean squared prediction errors for all the bandwidths provided by users. |
bandwidth.opt |
The bandwidths |
mspe.opt |
The minimal mean squared prediction error. |
Kai Yang [email protected] and Peihua Qiu
Yang, K. and Qiu, P. (2019). Nonparametric Estimation of the Spatio-Temporal Covariance Structure. Statistics in Medicine, 38, 4555-4565.
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st gt <- seq(0.3,0.4,0.1); gs <- seq(0.3,0.4,0.1) ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] mspe <- cv_mspe(y.sub,st.sub,gt,gs)
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st gt <- seq(0.3,0.4,0.1); gs <- seq(0.3,0.4,0.1) ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] mspe <- cv_mspe(y.sub,st.sub,gt,gs)
Daily influenza-like illness (ILI) incidence rates at 67 Florida counties
during years 2012-2014. The ILI incidence rates were collected by the
Electronic Surveillance System for the Early Notification of Community-based
Epidemics (ESSENCE) that was developed by the Florida Department of Health.
Researchers can have an access to the ESSENCE database after a proper online
registration. Moreover, some weather conditions during years 2012-2014 can
be obtained from the official website of the National Oceanic and Atmospheric
Administration of the United States. The ILI dataset used here contains 8
variables, including County
, Date
, Lat
, Long
,
Time
, Rate
(ILI incidence rate), Temp
(temperature)
and RH
(relative humidity), from the two databases mentioned above,
where Long
and Lat
refer to the longitude and latitude of the
geometric centers of each Florida county, respectively.
data(ili_dat)
data(ili_dat)
A dataframe containing observations of 8 variables.
Kai Yang [email protected] and Peihua Qiu
The spatio-temporal mean function can be estimated by the local linear kernel
smoothing procedure (cf., Yang and Qiu 2018). The function mod_cv
provides a reliable tool for selecting bandwidths (ht, hs)
used in
the local linear kernel smoothing procedure in cases when data are
spatio-temporally correlated.
mod_cv(y, st, ht = NULL, hs = NULL, eps = 0.1)
mod_cv(y, st, ht = NULL, hs = NULL, eps = 0.1)
y |
A vector of the spatio-temporal response |
st |
A three-column matrix specifying the spatial locations and times for all
the spatio-temporal observations in |
ht |
A sequence of temporal kernel bandwidth |
hs |
A sequence of temporal kernel bandwidth |
eps |
The value of this parametric is between 0 and 1. Default is 0.1. The following bimodal kernel function (cf., Yang and Qiu 2018) is used when calculting the modified cross-validation score:
The argument |
bandwidth |
A matrix containing all the bandwidths ( |
mcv |
The modified cross-validation scores for all the bandwidths provided by users. |
bandwidth.opt |
The selected bandwidths |
mcv.opt |
The modified cross-validation score of the selected bandwidths. |
Kai Yang [email protected] and Peihua Qiu
Yang, K. and Qiu, P. (2018). Spatio-Temporal Incidence Rate Data Analysis by Nonparametric Regression. Statistics in Medicine, 37, 2094-2107.
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st ht <- seq(0.10,0.15,0.05); hs <- seq(0.20,0.30,0.10) ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] mcv <- mod_cv(y.sub,st.sub,ht,hs,eps=0.1)
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st ht <- seq(0.10,0.15,0.05); hs <- seq(0.20,0.30,0.10) ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] mcv <- mod_cv(y.sub,st.sub,ht,hs,eps=0.1)
Daily PM2.5 concentration levels at 183 major cities in China during years
2014-2016. This dataset was collected by the China National Environmental
Monitoring Centre (CNEMC). It can be downloaded directly from the CNEMC
offical web page. The PM2.5 dataset used here contains 6 variables, including
Year
, Time
, Long
(longitude), Lat
(latitude),
City
, and PM2.5
.
data(pm25_dat)
data(pm25_dat)
A dataframe containing observations of 6 variables.
Kai Yang [email protected] and Peihua Qiu
This simulated dataset is saved as a list, and it contains the following three elements:
A vector of length ; it contains the data of the observed
response variable
.
A vector of length ; it contains the data of the covariate
.
An matrix containing the spatial locations and
times for all the observations in the dataset.
data(sim_dat)
data(sim_dat)
A list containing observations.
Kai Yang [email protected] and Peihua Qiu
library(MASS) set.seed(100) n <- 100; m <- 100; N <- n*m t <- rep(seq(0.01,1,0.01),each=m) su <- sv <- seq(0.1,1,0.1) su <- rep(su,each=10); sv <- rep(sv,10) su <- rep(su,n); sv <- rep(sv,n) st <- matrix(0,N,3) st[,1] <- su; st[,2] <- sv; st[,3] <- t mu <- rep(0,N) for(i in 1:N) { mu[i] <- 2+sin(pi*su[i])*sin(pi*sv[i])+sin(2*pi*t[i]) } dist <- matrix(0,m,m) # distance matrix for(i in 1:m) { for(j in 1:m) { dist[i,j] <- sqrt((su[i]-su[j])^2+(sv[i]-sv[j])^2) } } cov.s <- matrix(0,m,m) # spatial correlation for(i in 1:m) { for(j in 1:m) { cov.s[i,j] <- 0.3^2*exp(-30*dist[i,j]) } } noise <- matrix(0,n,m) noise[1,] <- MASS::mvrnorm(1,mu=rep(0,m),Sigma=cov.s) for(i in 2:n) { noise[i,] <- 0.1*noise[i-1,]+sqrt(1-0.1^2)* MASS::mvrnorm(1,mu=rep(0,m),Sigma=cov.s) } noise <- c(t(noise)); x <- rnorm(N,0,0.3) beta <- 0.5; y <- mu+x*beta+noise sim_dat <- list(); sim_dat$y <- y sim_dat$x <- x; sim_dat$st <- st
library(MASS) set.seed(100) n <- 100; m <- 100; N <- n*m t <- rep(seq(0.01,1,0.01),each=m) su <- sv <- seq(0.1,1,0.1) su <- rep(su,each=10); sv <- rep(sv,10) su <- rep(su,n); sv <- rep(sv,n) st <- matrix(0,N,3) st[,1] <- su; st[,2] <- sv; st[,3] <- t mu <- rep(0,N) for(i in 1:N) { mu[i] <- 2+sin(pi*su[i])*sin(pi*sv[i])+sin(2*pi*t[i]) } dist <- matrix(0,m,m) # distance matrix for(i in 1:m) { for(j in 1:m) { dist[i,j] <- sqrt((su[i]-su[j])^2+(sv[i]-sv[j])^2) } } cov.s <- matrix(0,m,m) # spatial correlation for(i in 1:m) { for(j in 1:m) { cov.s[i,j] <- 0.3^2*exp(-30*dist[i,j]) } } noise <- matrix(0,n,m) noise[1,] <- MASS::mvrnorm(1,mu=rep(0,m),Sigma=cov.s) for(i in 2:n) { noise[i,] <- 0.1*noise[i-1,]+sqrt(1-0.1^2)* MASS::mvrnorm(1,mu=rep(0,m),Sigma=cov.s) } noise <- c(t(noise)); x <- rnorm(N,0,0.3) beta <- 0.5; y <- mu+x*beta+noise sim_dat <- list(); sim_dat$y <- y sim_dat$x <- x; sim_dat$st <- st
The function spte_covest
is developed to estimate the spatio-temporal
covariance by the weighted
moment estimation procedure (cf., Yang and Qiu 2019). It should be noted that
the estimated covariance from
spte_covest
may not be positive
semidefinite and thus it may not be a legitimate covariance function. In such
cases, the projection-based modification needs to be used to make it positive
semidefinite (cf., Yang and Qiu 2019).
spte_covest(y, st, gt = NULL, gs = NULL, stE1 = NULL, stE2 = NULL)
spte_covest(y, st, gt = NULL, gs = NULL, stE1 = NULL, stE2 = NULL)
y |
A vector of length |
st |
An |
gt |
The temporal kernel bandwidth |
gs |
The spatial kernel bandwidth |
stE1 |
An |
stE2 |
An |
stE1 |
Same as the one in the arguments. |
stE2 |
Same as the one in the arguments. |
bandwidth |
The bandwidths |
covhat |
An |
Kai Yang [email protected] and Peihua Qiu
Yang, K. and Qiu, P. (2019). Nonparametric Estimation of the Spatio-Temporal Covariance Structure. Statistics in Medicine, 38, 4555-4565.
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] cov.est <- spte_covest(y.sub,st.sub)
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] cov.est <- spte_covest(y.sub,st.sub)
The function spte_decor
uses the estimated spatio-temporal mean and
covariance to decorrelate the observed spatio-temporal data. After data
decorrelation, each decorrelated observation should have asymptotic mean of
0 and asymptotic variance of 1, and the decorrelated data should be
asymptotically uncorrelated with each other.
spte_decor(y, st, y0, st0, T = 1, ht = NULL, hs = NULL, gt = NULL, gs = NULL)
spte_decor(y, st, y0, st0, T = 1, ht = NULL, hs = NULL, gt = NULL, gs = NULL)
y |
A vector of |
st |
A three-column matrix specifying the spatial locations and observation times of the observations to decorrelate. |
y0 |
A vector of |
st0 |
A three-column matrix specifying the spatial locations and times for all
the spatio-temporal observations in |
T |
The period of the spatio-temporal mean and covariance. Default value is 1. |
ht |
The temporal kernel bandwidth |
hs |
The spatial kernel bandwidth |
gt |
The temporal kernel bandwidth |
gs |
The spatial kernel bandwidth |
st |
Same as the one in the arguments. |
std.res |
The decorrelated data. |
Kai Yang [email protected] and Peihua Qiu
Yang, K. and Qiu, P. (2020). Online Sequential Monitoring of Spatio-Temporal Disease Incidence Rates. IISE Transactions, 52, 1218-1233.
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] decor <- spte_decor(y.sub,st.sub,y0=y.sub,st0=st.sub)
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] decor <- spte_decor(y.sub,st.sub,y0=y.sub,st0=st.sub)
The function spte_meanest
provides a major tool for estimating the
spatio-temporal mean function nonparametrically
(cf., Yang and Qiu 2018 and 2022).
spte_meanest(y, st, ht = NULL, hs = NULL, cor = FALSE, stE = NULL)
spte_meanest(y, st, ht = NULL, hs = NULL, cor = FALSE, stE = NULL)
y |
A vector of spatio-temporal observations. |
st |
A three-column matrix specifying the spatial locations and times for all the
spatio-temporal observations in |
ht |
The temporal kernel bandwidth |
hs |
The spatial kernel bandwidth |
cor |
A logical indicator where |
stE |
A three-column matrix specifying the spatial locations and times where
we want to calculate the estimate of the mean. Default is NULL, and
|
bandwidth |
The bandwidths ( |
stE |
Same as the one in the arguments. |
muhat |
The estimated mean values at the spatial locations and times
specified by |
Kai Yang [email protected] and Peihua Qiu
Yang, K. and Qiu, P. (2018). Spatio-Temporal Incidence Rate Data Analysis by Nonparametric Regression. Statistics in Medicine, 37, 2094-2107.
Yang, K. and Qiu, P. (2022). A Three-Step Local Smoothing Approach for Estimating the Mean and Covariance Functions of Spatio-Temporal Data. Annals of the Institute of Statistical Mathematics, 74, 49-68.
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] cov.est <- spte_meanest(y.sub,st.sub)
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,] cov.est <- spte_meanest(y.sub,st.sub)
The function spte_semiparmreg
fits the semiparametric spatio-temporal
model to study the relationship between the response and covariates
by the method discussed in Qiu and Yang (2021), in which an
iterative algorithm is used to compute the estimated regression coefficients.
spte_semiparmreg( y, st, x, ht = NULL, hs = NULL, maxIter = 1000, tol = 10^(-4), stE = NULL )
spte_semiparmreg( y, st, x, ht = NULL, hs = NULL, maxIter = 1000, tol = 10^(-4), stE = NULL )
y |
A vector of length |
st |
An |
x |
An |
ht |
The temporal kernel bandwidth |
hs |
The spatial kernel bandwidth |
maxIter |
A positive integer specifying the maximum number of iterations allowed. Default value is 1,000. |
tol |
A positive numeric value specifying the tolerance level for the convergence criterion. Default value is 0.0001. |
stE |
A three-column matrix specifying the spatial locations and times where we
want to calculate the estimate of the mean. Default is NULL, and
|
bandwidth |
The bandwidths ( |
stE |
Same as the one in the arguments. |
muhat |
The estimated mean values at spatial locations and times
specified by |
beta |
The vector of the estimated regression coefficient vector. |
Kai Yang [email protected] and Peihua Qiu
Qiu, P. and Yang, K. (2021). Effective Disease Surveillance by Using Covariate Information. Statistics in Medicine, 40, 5725-5745.
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st; x <- sim_dat$x ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,]; x.sub <- x[ids] semi.est <- spte_semiparmreg(y.sub,st.sub,x.sub,maxIter=2)
library(SpTe2M) data(sim_dat) y <- sim_dat$y; st <- sim_dat$st; x <- sim_dat$x ids <- 1:500; y.sub <- y[ids]; st.sub <- st[ids,]; x.sub <- x[ids] semi.est <- spte_semiparmreg(y.sub,st.sub,x.sub,maxIter=2)
The function sptemnt_cusum
implements the sequential online monitoring
procedure described in Yang and Qiu (2020).
sptemnt_cusum( y, st, type, ARL0 = 200, gamma = 0.1, B = 1000, bs = 5, T = 1, ht = NULL, hs = NULL, gt = NULL, gs = NULL )
sptemnt_cusum( y, st, type, ARL0 = 200, gamma = 0.1, B = 1000, bs = 5, T = 1, ht = NULL, hs = NULL, gt = NULL, gs = NULL )
y |
A vector of |
st |
An |
type |
A vector of |
ARL0 |
The pre-specified IC average run length. Default is 200. |
gamma |
The pre-specified allowance constant in the CUSUM chart. Default is 0.1. |
B |
The bootstrap sizes used in the block bootstrap procedure for determining the control limit. Default value is 1,000. |
bs |
The block size of the block bootstrap procedure. Default value is 5. |
T |
The period of the spatio-temporal mean and covariance. Default value is 1. |
ht |
The temporal kernel bandwidth |
hs |
The spatial kernel bandwidth |
gt |
The temporal kernel bandwidth |
gs |
The spatial kernel bandwidth |
ARL0 |
Same as the one in the arguments. |
gamma |
Same as the one in the arguments. |
cstat |
The charting statistics which can be used to make a plot for the control chart. |
cl |
The control limit that is determined by the block bootstrap. |
signal_time |
The signal time (i.e., the first time point when the
charting statistic |
Kai Yang [email protected] and Peihua Qiu
Yang, K. and Qiu, P. (2020). Online Sequential Monitoring of Spatio-Temporal Disease Incidence Rates. IISE Transactions, 52, 1218-1233.
library(SpTe2M) data(ili_dat) n <- 365; m <- 67 y <- ili_dat$Rate; st <- ili_dat[,3:5] type <- rep(c('IC1','IC2','Mnt'),c(m*(n+1),(m*n),(m*n))) ids <- c(1:(5*m),((n+1)*m+1):(m*(n+6)),((2*n+1)*m+1):(m*(2*n+6))) y.sub <- y[ids]; st.sub <- st[ids,]; type.sub <- type[ids] ili.cusum <- sptemnt_cusum(y.sub,st.sub,type.sub,ht=0.05,hs=6.5,gt=0.25,gs=1.5)
library(SpTe2M) data(ili_dat) n <- 365; m <- 67 y <- ili_dat$Rate; st <- ili_dat[,3:5] type <- rep(c('IC1','IC2','Mnt'),c(m*(n+1),(m*n),(m*n))) ids <- c(1:(5*m),((n+1)*m+1):(m*(n+6)),((2*n+1)*m+1):(m*(2*n+6))) y.sub <- y[ids]; st.sub <- st[ids,]; type.sub <- type[ids] ili.cusum <- sptemnt_cusum(y.sub,st.sub,type.sub,ht=0.05,hs=6.5,gt=0.25,gs=1.5)
The function sptemnt_ewmac
is developed to solve the spatio-temporal
process montoring problems in cases when the information in covariates
needs to be used. Please refer to Qiu and Yang (2021) for more details of
the method.
sptemnt_ewmac( y, x, st, type, ARL0 = 200, ARL0.z = 200, lambda = 0.1, B = 1000, bs = 5, T = 1, ht = NULL, hs = NULL, gt = NULL, gs = NULL )
sptemnt_ewmac( y, x, st, type, ARL0 = 200, ARL0.z = 200, lambda = 0.1, B = 1000, bs = 5, T = 1, ht = NULL, hs = NULL, gt = NULL, gs = NULL )
y |
A vector of |
x |
An |
st |
An |
type |
A vector of |
ARL0 |
The pre-specified IC average run length. Default is 200. |
ARL0.z |
The pre-specified IC average run length for the covariate chart.
Default is 200. Usually, set |
lambda |
The pre-specified weighting parameter in the EWMAC chart. Default is 0.1. |
B |
The bootstrap sizes used in the block bootstrap procedure for determining the control limit. Default value is 1,000. |
bs |
The block size of the block bootstrap procedure. Default value is 5. |
T |
The period of the spatio-temporal mean and covariance. Default value is 1. |
ht |
The temporal kernel bandwidth |
hs |
The spatial kernel bandwidth |
gt |
The temporal kernel bandwidth |
gs |
The spatial kernel bandwidth |
ARL0 |
Same as the one in the arguments. |
lambda |
Same as the one in the arguments. |
cstat |
The charting statistics which can be used to make a plot for the control chart. |
cl |
The control limit that is determined by the block bootstrap. |
signal_time |
The signal time (i.e., the first time point when the
charting statistic |
Kai Yang [email protected] and Peihua Qiu
Qiu, P. and Yang, K. (2021). Effective Disease Surveillance by Using Covariate Information. Statistics in Medicine, 40, 5725-5745.
library(SpTe2M) data(ili_dat) n <- 365; m <- 67 y <- ili_dat$Rate; x <- as.matrix(ili_dat[,7:8]); st <- ili_dat[,3:5] type <- rep(c('IC1','IC2','Mnt'),c(m*(n+1),(m*n),(m*n))) ids <- c(1:(5*m),((n+1)*m+1):(m*(n+6)),((2*n+1)*m+1):(m*(2*n+6))) y.sub <- y[ids]; x.sub <- x[ids,]; st.sub <- st[ids,]; type.sub <- type[ids] ili.ewmac <- sptemnt_ewmac(y.sub,x.sub,st.sub,type.sub,ht=0.05,hs=6.5,gt=0.25,gs=1.5)
library(SpTe2M) data(ili_dat) n <- 365; m <- 67 y <- ili_dat$Rate; x <- as.matrix(ili_dat[,7:8]); st <- ili_dat[,3:5] type <- rep(c('IC1','IC2','Mnt'),c(m*(n+1),(m*n),(m*n))) ids <- c(1:(5*m),((n+1)*m+1):(m*(n+6)),((2*n+1)*m+1):(m*(2*n+6))) y.sub <- y[ids]; x.sub <- x[ids,]; st.sub <- st[ids,]; type.sub <- type[ids] ili.ewmac <- sptemnt_ewmac(y.sub,x.sub,st.sub,type.sub,ht=0.05,hs=6.5,gt=0.25,gs=1.5)
Implementation of the online spatio-temporal process monitoring procedure described in Qiu and Yang (2023), in which spatial locations with the detected shifts are guaranteed to be small clustered spatal regions by the exponentially weighted spatial LASSO.
sptemnt_ewsl( y, st, type, ARL0 = 200, lambda = 0.1, B = 1000, bs = 5, T = 1, ht = NULL, hs = NULL, gt = NULL, gs = NULL )
sptemnt_ewsl( y, st, type, ARL0 = 200, lambda = 0.1, B = 1000, bs = 5, T = 1, ht = NULL, hs = NULL, gt = NULL, gs = NULL )
y |
A vector of |
st |
An |
type |
A vector of |
ARL0 |
The pre-specified IC average run length. Default is 200. |
lambda |
The pre-specified weighting parameter in the EWMAC chart. Default is 0.1. |
B |
The bootstrap sizes used in the block bootstrap procedure for determining the control limit. Default value is 1,000. |
bs |
The block size of the block bootstrap procedure. Default value is 5. |
T |
The period of the spatio-temporal mean and covariance. Default value is 1. |
ht |
The temporal kernel bandwidth |
hs |
The spatial kernel bandwidth |
gt |
The temporal kernel bandwidth |
gs |
The spatial kernel bandwidth |
ARL0 |
Same as the one in the arguments. |
lambda |
Same as the one in the arguments. |
cstat |
The charting statistics which can be used to make a plot for the control chart. |
cl |
The control limit that is determined by the block bootstrap. |
signal_time |
The signal time (i.e., the first time point when the
charting statistic |
Kai Yang [email protected] and Peihua Qiu
Qiu, P. and Yang, K. (2023). Spatio-Temporal Process Monitoring Using Exponentially Weighted Spatial LASSO. Journal of Quality Technology, 55, 163-180.
library(SpTe2M) data(ili_dat) n <- 365; m <- 67 y <- ili_dat$Rate; st <- ili_dat[,3:5] type <- rep(c('IC1','IC2','Mnt'),c(m*(n+1),(m*n),(m*n))) ids <- c(1:(5*m),((n+1)*m+1):(m*(n+6)),((2*n+1)*m+1):(m*(2*n+6))) y.sub <- y[ids]; st.sub <- st[ids,]; type.sub <- type[ids] ili.ewsl <- sptemnt_ewsl(y.sub,st.sub,type.sub,ht=0.05,hs=6.5,gt=0.25,gs=1.5)
library(SpTe2M) data(ili_dat) n <- 365; m <- 67 y <- ili_dat$Rate; st <- ili_dat[,3:5] type <- rep(c('IC1','IC2','Mnt'),c(m*(n+1),(m*n),(m*n))) ids <- c(1:(5*m),((n+1)*m+1):(m*(n+6)),((2*n+1)*m+1):(m*(2*n+6))) y.sub <- y[ids]; st.sub <- st[ids,]; type.sub <- type[ids] ili.ewsl <- sptemnt_ewsl(y.sub,st.sub,type.sub,ht=0.05,hs=6.5,gt=0.25,gs=1.5)