Package: maq 0.5.0
Erik Sverdrup
maq: Multi-Armed Qini
Policy evaluation using generalized Qini curves: Evaluate data-driven treatment targeting rules for one or more treatment arms over different budget constraints in experimental or observational settings under unconfoundedness.
Authors:
maq_0.5.0.tar.gz
maq_0.5.0.tar.gz(r-4.5-noble)maq_0.5.0.tar.gz(r-4.4-noble)
maq_0.5.0.tgz(r-4.4-emscripten)maq_0.5.0.tgz(r-4.3-emscripten)
maq.pdf |maq.html✨
maq/json (API)
# Install 'maq' in R: |
install.packages('maq', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/grf-labs/maq/issues
Last updated 1 months agofrom:3f742c6420. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 25 2024 |
R-4.5-linux-x86_64 | OK | Nov 25 2024 |
Exports:average_gaindifference_gainget_aipw_scoresget_ipw_scoresintegrated_differencemaq
Dependencies:Rcpp
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Get estimate of gain given a spend level. | average_gain |
Get estimate of difference in gain given a spend level with paired standard errors. | difference_gain |
Construct evaluation scores via augmented inverse-propensity weighting. | get_aipw_scores |
Construct evaluation scores via inverse-propensity weighting. | get_ipw_scores |
Get estimate of the area between two Qini curves with paired standard errors. | integrated_difference |
Fit a Multi-armed Qini curve. | maq |
Plot the estimated Qini curve. | plot.maq |
Predict treatment allocation. | predict.maq |
Print a maq object. | print.maq |
Qini curve summary. | summary.maq |