Package: noisemodel 1.0.2

José A. Sáez

noisemodel: Noise Models for Classification Datasets

Implementation of models for the controlled introduction of errors in classification datasets. This package contains the noise models described in Saez (2022) <doi:10.3390/math10203736> that allow corrupting class labels, attributes and both simultaneously.

Authors:José A. Sáez [aut, cre]

noisemodel_1.0.2.tar.gz
noisemodel_1.0.2.tar.gz(r-4.5-noble)noisemodel_1.0.2.tar.gz(r-4.4-noble)
noisemodel_1.0.2.tgz(r-4.4-emscripten)noisemodel_1.0.2.tgz(r-4.3-emscripten)
noisemodel.pdf |noisemodel.html
noisemodel/json (API)
NEWS

# Install 'noisemodel' in R:
install.packages('noisemodel', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 5 scripts 176 downloads 79 exports 90 dependencies

Last updated 2 years agofrom:554d3f013b. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 04 2024
R-4.5-linuxNOTENov 04 2024

Exports:asy_def_lnasy_int_anasy_spa_lnasy_uni_anasy_uni_lnattm_uni_lnbord_distbord_noiseboud_gau_anclu_vot_lnexp_bor_lnexps_cuni_lnfindnoisefra_bdir_lngam_bor_lngau_bor_lngaum_bor_lnglev_uni_lnhubp_uni_lnimp_int_anirs_bdir_lnlap_bor_lnlarm_uni_lnmaj_udir_lnmind_bdir_lnminp_uni_lnmis_pre_lnmulc_udir_lnnei_bor_lnnlin_bor_lnnoisetypeoned_uni_lnopes_idnn_lnopes_idu_lnpai_bdir_lnpmd_con_lnqua_uni_lnrunif_replacesafe_samplesample_replacesco_con_lnsigb_uni_lnsmam_bor_lnsmu_cuni_lnsym_adj_lnsym_cen_lnsym_con_lnsym_cuni_ansym_cuni_cnsym_cuni_lnsym_ddef_lnsym_def_lnsym_dia_lnsym_dran_lnsym_end_ansym_exc_lnsym_gau_ansym_hie_lnsym_hienc_lnsym_int_ansym_natd_lnsym_nean_lnsym_nexc_lnsym_nuni_lnsym_opt_lnsym_pes_lnsym_sgau_ansym_uni_ansym_uni_lnsym_usim_lnsymd_gau_ansymd_gimg_ansymd_rpix_ansymd_uni_anugau_bor_lnulap_bor_lnunc_fixw_anunc_vgau_anuncs_guni_cn

Dependencies:C50caretclassclassIntcliclockcodetoolscolorspacecpp11Cubistdata.tablediagramdigestdplyre1071ExtDistfansifarverFNNforeachFormulafuturefuture.applygenericsggplot2globalsgluegowergtablehardhatinumipredisobanditeratorsKernSmoothlabelinglatticelavalibcoinlifecyclelistenvlsrlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellmvtnormnlmenloptrnnetnumDerivoptimxparallellypartykitpillarpkgconfigplyrpracmapROCprodlimprogressrproxypurrrR6RColorBrewerRcpprecipesreshape2rlangrpartRSNNSscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr

Introduction to the noisemodel package

Rendered fromnoisemodel.Rmdusingknitr::rmarkdownon Nov 04 2024.

Last update: 2022-10-17
Started: 2022-10-17

Readme and manuals

Help Manual

Help pageTopics
Asymmetric default label noiseasy_def_ln asy_def_ln.default asy_def_ln.formula
Asymmetric interval-based attribute noiseasy_int_an asy_int_an.default asy_int_an.formula
Asymmetric sparse label noiseasy_spa_ln asy_spa_ln.default asy_spa_ln.formula
Asymmetric uniform attribute noiseasy_uni_an asy_uni_an.default asy_uni_an.formula
Asymmetric uniform label noiseasy_uni_ln asy_uni_ln.default asy_uni_ln.formula
Attribute-mean uniform label noiseattm_uni_ln attm_uni_ln.default attm_uni_ln.formula
Boundary/dependent Gaussian attribute noiseboud_gau_an boud_gau_an.default boud_gau_an.formula
Clustering-based voting label noiseclu_vot_ln clu_vot_ln.default clu_vot_ln.formula
diris2D datasetdiris2D
Exponential borderline label noiseexp_bor_ln exp_bor_ln.default exp_bor_ln.formula
Exponential/smudge completely-uniform label noiseexps_cuni_ln exps_cuni_ln.default exps_cuni_ln.formula
Fraud bidirectional label noisefra_bdir_ln fra_bdir_ln.default fra_bdir_ln.formula
Gamma borderline label noisegam_bor_ln gam_bor_ln.default gam_bor_ln.formula
Gaussian borderline label noisegau_bor_ln gau_bor_ln.default gau_bor_ln.formula
Gaussian-mixture borderline label noisegaum_bor_ln gaum_bor_ln.default gaum_bor_ln.formula
Gaussian-level uniform label noiseglev_uni_ln glev_uni_ln.default glev_uni_ln.formula
Hubness-proportional uniform label noisehubp_uni_ln hubp_uni_ln.default hubp_uni_ln.formula
Importance interval-based attribute noiseimp_int_an imp_int_an.default imp_int_an.formula
iris2D datasetiris2D
IR-stable bidirectional label noiseirs_bdir_ln irs_bdir_ln.default irs_bdir_ln.formula
Laplace borderline label noiselap_bor_ln lap_bor_ln.default lap_bor_ln.formula
Large-margin uniform label noiselarm_uni_ln larm_uni_ln.default larm_uni_ln.formula
Majority-class unidirectional label noisemaj_udir_ln maj_udir_ln.default maj_udir_ln.formula
Minority-driven bidirectional label noisemind_bdir_ln mind_bdir_ln.default mind_bdir_ln.formula
Minority-proportional uniform label noiseminp_uni_ln minp_uni_ln.default minp_uni_ln.formula
Misclassification prediction label noisemis_pre_ln mis_pre_ln.default mis_pre_ln.formula
Multiple-class unidirectional label noisemulc_udir_ln mulc_udir_ln.default mulc_udir_ln.formula
Neighborwise borderline label noisenei_bor_ln nei_bor_ln.default nei_bor_ln.formula
Non-linearwise borderline label noisenlin_bor_ln nlin_bor_ln.default nlin_bor_ln.formula
One-dimensional uniform label noiseoned_uni_ln oned_uni_ln.default oned_uni_ln.formula
Open-set ID/nearest-neighbor label noiseopes_idnn_ln opes_idnn_ln.default opes_idnn_ln.formula
Open-set ID/uniform label noiseopes_idu_ln opes_idu_ln.default opes_idu_ln.formula
Pairwise bidirectional label noisepai_bdir_ln pai_bdir_ln.default pai_bdir_ln.formula
Plot function for class ndmodelplot.ndmodel
PMD-based confidence label noisepmd_con_ln pmd_con_ln.default pmd_con_ln.formula
Print function for class ndmodelprint.ndmodel
Quadrant-based uniform label noisequa_uni_ln qua_uni_ln.default qua_uni_ln.formula
Score-based confidence label noisesco_con_ln sco_con_ln.default sco_con_ln.formula
Sigmoid-bounded uniform label noisesigb_uni_ln sigb_uni_ln.default sigb_uni_ln.formula
Small-margin borderline label noisesmam_bor_ln smam_bor_ln.default smam_bor_ln.formula
Smudge-based completely-uniform label noisesmu_cuni_ln smu_cuni_ln.default smu_cuni_ln.formula
Summary function for class ndmodelsummary.ndmodel
Symmetric adjacent label noisesym_adj_ln sym_adj_ln.default sym_adj_ln.formula
Symmetric center-based label noisesym_cen_ln sym_cen_ln.default sym_cen_ln.formula
Symmetric confusion label noisesym_con_ln sym_con_ln.default sym_con_ln.formula
Symmetric completely-uniform attribute noisesym_cuni_an sym_cuni_an.default sym_cuni_an.formula
Symmetric completely-uniform combined noisesym_cuni_cn sym_cuni_cn.default sym_cuni_cn.formula
Symmetric completely-uniform label noisesym_cuni_ln sym_cuni_ln.default sym_cuni_ln.formula
Symmetric double-default label noisesym_ddef_ln sym_ddef_ln.default sym_ddef_ln.formula
Symmetric default label noisesym_def_ln sym_def_ln.default sym_def_ln.formula
Symmetric diametrical label noisesym_dia_ln sym_dia_ln.default sym_dia_ln.formula
Symmetric double-random label noisesym_dran_ln sym_dran_ln.default sym_dran_ln.formula
Symmetric end-directed attribute noisesym_end_an sym_end_an.default sym_end_an.formula
Symmetric exchange label noisesym_exc_ln sym_exc_ln.default sym_exc_ln.formula
Symmetric Gaussian attribute noisesym_gau_an sym_gau_an.default sym_gau_an.formula
Symmetric hierarchical label noisesym_hie_ln sym_hie_ln.default sym_hie_ln.formula
Symmetric hierarchical/next-class label noisesym_hienc_ln sym_hienc_ln.default sym_hienc_ln.formula
Symmetric interval-based attribute noisesym_int_an sym_int_an.default sym_int_an.formula
Symmetric natural-distribution label noisesym_natd_ln sym_natd_ln.default sym_natd_ln.formula
Symmetric nearest-neighbor label noisesym_nean_ln sym_nean_ln.default sym_nean_ln.formula
Symmetric next-class label noisesym_nexc_ln sym_nexc_ln.default sym_nexc_ln.formula
Symmetric non-uniform label noisesym_nuni_ln sym_nuni_ln.default sym_nuni_ln.formula
Symmetric optimistic label noisesym_opt_ln sym_opt_ln.default sym_opt_ln.formula
Symmetric pessimistic label noisesym_pes_ln sym_pes_ln.default sym_pes_ln.formula
Symmetric scaled-Gaussian attribute noisesym_sgau_an sym_sgau_an.default sym_sgau_an.formula
Symmetric uniform attribute noisesym_uni_an sym_uni_an.default sym_uni_an.formula
Symmetric uniform label noisesym_uni_ln sym_uni_ln.default sym_uni_ln.formula
Symmetric unit-simplex label noisesym_usim_ln sym_usim_ln.default sym_usim_ln.formula
Symmetric/dependent Gaussian attribute noisesymd_gau_an symd_gau_an.default symd_gau_an.formula
Symmetric/dependent Gaussian-image attribute noisesymd_gimg_an symd_gimg_an.default symd_gimg_an.formula
Symmetric/dependent random-pixel attribute noisesymd_rpix_an symd_rpix_an.default symd_rpix_an.formula
Symmetric/dependent uniform attribute noisesymd_uni_an symd_uni_an.default symd_uni_an.formula
Uneven-Gaussian borderline label noiseugau_bor_ln ugau_bor_ln.default ugau_bor_ln.formula
Uneven-Laplace borderline noiseulap_bor_ln ulap_bor_ln.default ulap_bor_ln.formula
Unconditional fixed-width attribute noiseunc_fixw_an unc_fixw_an.default unc_fixw_an.formula
Unconditional vp-Gaussian attribute noiseunc_vgau_an unc_vgau_an.default unc_vgau_an.formula
Unconditional/symmetric Gaussian/uniform combined noiseuncs_guni_cn uncs_guni_cn.default uncs_guni_cn.formula