Package: SCCI 1.2
Alexander Marx
SCCI: Stochastic Complexity-Based Conditional Independence Test for Discrete Data
An efficient implementation of SCCI using 'Rcpp'. SCCI is short for the Stochastic Complexity-based Conditional Independence criterium (Marx and Vreeken, 2019). SCCI is an asymptotically unbiased and L2 consistent estimator of (conditional) mutual information for discrete data.
Authors:
SCCI_1.2.tar.gz
SCCI_1.2.tar.gz(r-4.5-noble)SCCI_1.2.tar.gz(r-4.4-noble)
SCCI_1.2.tgz(r-4.4-emscripten)SCCI_1.2.tgz(r-4.3-emscripten)
SCCI.pdf |SCCI.html✨
SCCI/json (API)
NEWS
# Install 'SCCI' in R: |
install.packages('SCCI', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:07c029949a. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 28 2024 |
R-4.5-linux-x86_64 | OK | Nov 28 2024 |
Exports:conditionalShannonEntropyconditionalStochasticComplexitypSCCIregretSCCIshannonEntropystochasticComplexity
Dependencies:Rcpp
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Conditional Shannon Entropy | conditionalShannonEntropy |
Conditional Stochastic Complexity for Multinomials | conditionalStochasticComplexity |
Stochastic Complexity-based Conditional Independence Criterium (p-value) | pSCCI |
Multinomial Regret Term | regret |
Stochastic Complexity-based Conditional Independence Criterium | SCCI |
Shannon Entropy | shannonEntropy |
Stochastic Complexity for Multinomials | stochasticComplexity |