Package: vagam 1.1

Han Lin Shang
vagam: Variational Approximations for Generalized Additive Models
Fits generalized additive models (GAMs) using a variational approximations (VA) framework. In brief, the VA framework provides a fully or at least closed to fully tractable lower bound approximation to the marginal likelihood of a GAM when it is parameterized as a mixed model (using penalized splines, say). In doing so, the VA framework aims offers both the stability and natural inference tools available in the mixed model approach to GAMs, while achieving computation times comparable to that of using the penalized likelihood approach to GAMs. See Hui et al. (2018) <doi:10.1080/01621459.2018.1518235>.
Authors:
vagam_1.1.tar.gz
vagam_1.1.tar.gz(r-4.5-noble)vagam_1.1.tar.gz(r-4.4-noble)
vagam_1.1.tgz(r-4.4-emscripten)vagam_1.1.tgz(r-4.3-emscripten)
vagam.pdf |vagam.html✨
vagam/json (API)
# Install 'vagam' in R: |
install.packages('vagam', repos = 'https://cloud.r-project.org') |
- wage_data - Union membership data set
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:cedb18bba4. Checks:1 OK, 2 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 04 2025 |
R-4.5-linux | NOTE | Mar 04 2025 |
R-4.4-linux | NOTE | Mar 04 2025 |
Exports:gamsimplot.vagampredict.vagamvagam
Dependencies:bootgamm4latticelme4MASSMatrixmgcvminqamvtnormnlmenloptrrbibutilsRcppRcppEigenRdpackreformulastruncnorm
Citation
To cite the vagam package, use:
Shang HL, Hui FK (2019). vagam: Variational Approximations for Generalized Additive Models. R package version 1.1, https://CRAN.R-project.org/package=vagam.
Hui FKC, You C, Shang HL, Mueller S (2019). “Semiparametric regression using variational approximations.” Journal of the American Statistical Association. https://arxiv.org/abs/1810.01949.
Corresponding BibTeX entries:
@Manual{, title = {{vagam}: Variational Approximations for Generalized Additive Models}, author = {Han Lin Shang and Francis K.C. Hui}, year = {2019}, note = {R package version 1.1}, url = {https://CRAN.R-project.org/package=vagam}, }
@Article{, title = {Semiparametric regression using variational approximations}, author = {F. K. C. Hui and C. You and H. L. Shang and S. Mueller}, journal = {Journal of the American Statistical Association}, year = {2019}, url = {https://arxiv.org/abs/1810.01949}, }