Package: mogavs 1.1.0

Tommi Pajala

mogavs: Multiobjective Genetic Algorithm for Variable Selection in Regression

Functions for exploring the best subsets in regression with a genetic algorithm. The package is much faster than methods relying on complete enumeration, and is suitable for data sets with large number of variables. For more information, see Sinha, Malo & Kuosmanen (2015) <doi:10.1080/10618600.2014.899236>.

Authors:Tommi Pajala [aut, cre], Pekka Malo [aut], Ankur Sinha [aut], Timo Kuosmanen [ctb]

mogavs_1.1.0.tar.gz
mogavs_1.1.0.tar.gz(r-4.5-noble)mogavs_1.1.0.tar.gz(r-4.4-noble)
mogavs_1.1.0.tgz(r-4.4-emscripten)mogavs_1.1.0.tgz(r-4.3-emscripten)
mogavs.pdf |mogavs.html
mogavs/json (API)

# Install 'mogavs' in R:
install.packages('mogavs', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 20 scripts 114 downloads 10 exports 4 dependencies

Last updated 7 years agofrom:af381ad16e. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-linuxOKOct 31 2024

Exports:createAdditionalPlotscv.mogavsgetBestModelgetBestModelVarsmogavsmogavs.defaultmogavs.formulamogavsToLinearplotVarUsagesummary.mogavs

Dependencies:cvToolsDEoptimRlatticerobustbase