Package: rrat 1.0.0
Yi He
rrat: Robust Regression with Asymmetric Heavy-Tail Noise Distributions
Implementation of Robust Regression tailored to deal with Asymmetric noise Distribution, which was originally proposed by Takeuchi & Bengio & Kanamori (2002) <doi:10.1162/08997660260293300>. In addition, this implementation is extended as introducing potential feature regularization by LASSO etc.
Authors:
rrat_1.0.0.tar.gz
rrat_1.0.0.tar.gz(r-4.5-noble)rrat_1.0.0.tar.gz(r-4.4-noble)
rrat_1.0.0.tgz(r-4.4-emscripten)rrat_1.0.0.tgz(r-4.3-emscripten)
rrat.pdf |rrat.html✨
rrat/json (API)
# Install 'rrat' in R: |
install.packages('rrat', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 years agofrom:0ff6fcb9c0. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 11 2024 |
R-4.5-linux | OK | Dec 11 2024 |
Exports:rrat
Dependencies:latticeMASSMatrixMatrixModelsquantregSparseMsurvival
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Robust Regression with Asymmetric Heavy-Tail Noise Distributions | predict.rrat print.rrat rrat rrat.default |