Package: HeckmanEM 0.2-1
Marcos Prates
HeckmanEM: Fit Normal, Student-t or Contaminated Normal Heckman Selection Models
It performs maximum likelihood estimation for the Heckman selection model (Normal, Student-t or Contaminated normal) using an EM-algorithm <doi:10.1016/j.jmva.2021.104737>. It also performs influence diagnostic through global and local influence for four possible perturbation schema.
Authors:
HeckmanEM_0.2-1.tar.gz
HeckmanEM_0.2-1.tar.gz(r-4.5-noble)HeckmanEM_0.2-1.tar.gz(r-4.4-noble)
HeckmanEM_0.2-1.tgz(r-4.4-emscripten)HeckmanEM_0.2-1.tgz(r-4.3-emscripten)
HeckmanEM.pdf |HeckmanEM.html✨
HeckmanEM/json (API)
# Install 'HeckmanEM' in R: |
install.packages('HeckmanEM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 8 months agofrom:8dea03d425. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-linux | OK | Nov 04 2024 |
Exports:CaseDeletionHeckmanEMHeckmanEM.criteriaHeckmanEM.envelopeHeckmanEM.infomatInfluencerHeckman
Dependencies:abindbackportsBHbootbroomcarcarDataclicolorspacecontfraccowplotcpp11DerivdeSolvedigestdoBydplyrellipticfansifarverFormulagenericsggplot2gluegtablehypergeoisobandlabelinglatticelifecyclelme4lmtestmagrittrMASSMatrixMatrixModelsmaxLikmgcvmicrobenchmarkminqamiscToolsmodelrMomTruncmunsellmvtnormnlmenloptrnnetnumDerivpbkrtestPerformanceAnalyticspillarpkgconfigpurrrquadprogquantregR6RColorBrewerRcppRcppArmadilloRcppEigenrlangsampleSelectionsandwichscalesSparseMstringistringrsurvivalsystemfittibbletidyrtidyselecttlrmvnmvtutf8vctrsVGAMviridisLitewithrxtszoo