Package: PNAR 1.7
Michail Tsagris
PNAR: Poisson Network Autoregressive Models
Quasi likelihood-based methods for estimating linear and log-linear Poisson Network Autoregression models with p lags and covariates. Tools for testing the linearity versus several non-linear alternatives. Tools for simulation of multivariate count distributions, from linear and non-linear PNAR models, by using a specific copula construction. References include: Armillotta, M. and K. Fokianos (2023). "Nonlinear network autoregression". Annals of Statistics, 51(6): 2526--2552. <doi:10.1214/23-AOS2345>. Armillotta, M. and K. Fokianos (2024). "Count network autoregression". Journal of Time Series Analysis, 45(4): 584--612. <doi:10.1111/jtsa.12728>. Armillotta, M., Tsagris, M. and Fokianos, K. (2024). "Inference for Network Count Time Series with the R Package PNAR". The R Journal, 15/4: 255--269. <doi:10.32614/RJ-2023-094>.
Authors:
PNAR_1.7.tar.gz
PNAR_1.7.tar.gz(r-4.5-noble)PNAR_1.7.tar.gz(r-4.4-noble)
PNAR_1.7.tgz(r-4.4-emscripten)PNAR_1.7.tgz(r-4.3-emscripten)
PNAR.pdf |PNAR.html✨
PNAR/json (API)
# Install 'PNAR' in R: |
install.packages('PNAR', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 months agofrom:1ee91fa11c. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 05 2024 |
R-4.5-linux | OK | Dec 05 2024 |
Exports:adjaadja_gnpgetNglobal_optimise_LM_stnarpqglobal_optimise_LM_tnarpqlin_estimnarpqlin_ic_plotlin_narpq_initlog_lin_estimnarpqlog_lin_ic_plotlog_lin_narpq_initpoisson.MODpqpoisson.MODpq.logpoisson.MODpq.nonlinpoisson.MODpq.stnarpoisson.MODpq.tnarrcopulascore_test_nonlinpq_h0score_test_stnarpq_DVscore_test_stnarpq_jscore_test_tnarpq_j
Dependencies:clicodetoolscpp11doParallelforeachglueigraphiteratorslatticelifecyclemagrittrMatrixnloptrpkgconfigRcppRcppArmadilloRcppGSLRcppParallelRcppZigguratRfastRfast2rlangRnanoflannvctrs