Package: SCOUTer 1.0.0

Alba Gonzalez Cebrian

SCOUTer: Simulate Controlled Outliers

Using principal component analysis as a base model, 'SCOUTer' offers a new approach to simulate outliers in a simple and precise way. The user can generate new observations defining them by a pair of well-known statistics: the Squared Prediction Error (SPE) and the Hotelling's T^2 (T^2) statistics. Just by introducing the target values of the SPE and T^2, 'SCOUTer' returns a new set of observations with the desired target properties. Authors: Alba González, Abel Folch-Fortuny, Francisco Arteaga and Alberto Ferrer (2020).

Authors:Alba Gonzalez Cebrian [aut, cre], Abel Folch-Fortuny [aut], Francisco Arteaga [aut], Alberto Ferrer [aut]

SCOUTer_1.0.0.tar.gz
SCOUTer_1.0.0.tar.gz(r-4.5-noble)SCOUTer_1.0.0.tar.gz(r-4.4-noble)
SCOUTer_1.0.0.tgz(r-4.4-emscripten)SCOUTer_1.0.0.tgz(r-4.3-emscripten)
SCOUTer.pdf |SCOUTer.html
SCOUTer/json (API)

# Install 'SCOUTer' in R:
install.packages('SCOUTer', repos = 'https://cloud.r-project.org')
Datasets:
  • X - Demo dataset

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 165 downloads 18 exports 71 dependencies

Last updated 5 years agofrom:e19a07eb39. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-linuxOKMar 06 2025
R-4.4-linuxOKMar 06 2025

Exports:barwithuclcustombardistplotdistplotsimpledotagdscplotht2infoobscontribpanelpcamb_classicpcamescoreplotscoreplotsimplescoutscoutgridscoutsimplescoutstepsspeinfoxshift

Dependencies:abindbackportsbootbroomcarcarDataclicolorspacecorrplotcowplotcpp11DerivdoBydplyrfansifarverFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigpolynompurrrquantregR6rbibutilsRColorBrewerRcppRcppEigenRdpackreformulasrlangrstatixscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithr

SCOUTer demo

Rendered fromdemoscouter.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2020-06-30
Started: 2020-06-30

Citation

To cite package ‘SCOUTer’ in publications use:

Gonzalez Cebrian A, Folch-Fortuny A, Arteaga F, Ferrer A (2020). SCOUTer: Simulate Controlled Outliers. R package version 1.0.0, https://CRAN.R-project.org/package=SCOUTer.

Corresponding BibTeX entry:

  @Manual{,
    title = {SCOUTer: Simulate Controlled Outliers},
    author = {Alba {Gonzalez Cebrian} and Abel Folch-Fortuny and
      Francisco Arteaga and Alberto Ferrer},
    year = {2020},
    note = {R package version 1.0.0},
    url = {https://CRAN.R-project.org/package=SCOUTer},
  }

Readme and manuals

SCOUTerRpack

SCOUTer package in R

Simulating anomalous data is an extremely common procedure. However, very little attention is paid to this step and it is usually defined ad hoc, existing a lack of standard. In this package, a new framework to simulate outliers directly controlling their outlying properties has been proposed. This framework offers the possibility of generating data sets with all type of desired properties, given that the user can control the pair of statistics that essentially define outliers: the Squared Prediction Error ( SPE ) and the Hotelling-T2 ( T2 ). These metrics evaluate in a complementary way how far is an observation from the majority of a data set. Since Given an observation with initial values for the statistics, a PCA model and target values for the statistics, our simulation method drifts the observation in a direction that shifts the initial SPE and the T2 until reaching their target values.

Help Manual

Help pageTopics
barwithuclbarwithucl
custombarcustombar
distplotdistplot
displotsimpledistplotsimple
dotagdotag
dscplotdscplot
ht2infoht2info
obscontribpanelobscontribpanel
pcamb_classicpcamb_classic
pcamepcame
scoreplotscoreplot
scoreplotsimplescoreplotsimple
scoutscout
scoutgridscoutgrid
scoutsimplescoutsimple
scoutstepsscoutsteps
speinfospeinfo
Demo datasetX
xshiftxshift