Package: SPECK 1.0.0

Azka Javaid
SPECK: Receptor Abundance Estimation using Reduced Rank Reconstruction and Clustered Thresholding
Surface Protein abundance Estimation using CKmeans-based clustered thresholding ('SPECK') is an unsupervised learning-based method that performs receptor abundance estimation for single cell RNA-sequencing data based on reduced rank reconstruction (RRR) and a clustered thresholding mechanism. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2019.05.031>, Butler et al., (2018) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for the RRR is further detailed in: Erichson et al., (2019) <doi:10.18637/jss.v089.i11> and Halko et al., (2009) <arxiv:0909.4061>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.
Authors:
SPECK_1.0.0.tar.gz
SPECK_1.0.0.tar.gz(r-4.5-noble)SPECK_1.0.0.tar.gz(r-4.4-noble)
SPECK_1.0.0.tgz(r-4.4-emscripten)
SPECK.pdf |SPECK.html✨
SPECK/json (API)
# Install 'SPECK' in R: |
install.packages('SPECK', repos = 'https://cloud.r-project.org') |
- pbmc.rna.mat - Single cell RNA-sequencing (scRNA-seq) peripheral blood (PBMC) data sample.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:650b0f8698. Checks:1 OK, 2 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 12 2025 |
R-4.5-linux | WARNING | Mar 12 2025 |
R-4.4-linux | WARNING | Mar 12 2025 |
Exports:%>%ckmeansThresholdrandomizedRRRspeck
Dependencies:abindaskpassbase64encBHbitopsbslibcachemcaToolsCkmeans.1d.dpcliclustercodetoolscolorspacecommonmarkcowplotcpp11crayoncrosstalkcurldata.tabledeldirdigestdotCall64dplyrdqrngevaluatefansifarverfastDummiesfastmapfitdistrplusFNNfontawesomefsfuturefuture.applygenericsggplot2ggrepelggridgesglobalsgluegoftestgplotsgridExtragtablegtoolsherehighrhtmltoolshtmlwidgetshttpuvhttricaigraphirlbaisobandjquerylibjsonliteKernSmoothknitrlabelinglaterlatticelazyevalleidenbaselifecyclelistenvlmtestmagrittrMASSMatrixmatrixStatsmemoisemgcvmimeminiUImunsellnlmeopensslparallellypatchworkpbapplypillarpkgconfigplotlyplyrpngpolyclipprogressrpromisespurrrR6RANNrappdirsrbibutilsRColorBrewerRcppRcppAnnoyRcppArmadilloRcppEigenRcppHNSWRcppProgressRcppTOMLRdpackreshape2reticulaterlangrmarkdownROCRrprojrootRSpectrarsvdRtsnesassscalesscattermoresctransformSeuratSeuratObjectshinysitmosourcetoolsspspamspatstat.dataspatstat.explorespatstat.geomspatstat.randomspatstat.sparsespatstat.univarspatstat.utilsstringistringrsurvivalsystensortibbletidyrtidyselecttinytexutf8uwotvctrsviridisLitewithrxfunxtableyamlzoo
Citation
To cite package ‘SPECK’ in publications use:
Frost H, Javaid A (2023). SPECK: Receptor Abundance Estimation using Reduced Rank Reconstruction and Clustered Thresholding. R package version 1.0.0, https://CRAN.R-project.org/package=SPECK.
Corresponding BibTeX entry:
@Manual{, title = {SPECK: Receptor Abundance Estimation using Reduced Rank Reconstruction and Clustered Thresholding}, author = {H. Robert Frost and Azka Javaid}, year = {2023}, note = {R package version 1.0.0}, url = {https://CRAN.R-project.org/package=SPECK}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Clustered thresholding of a vector. | ckmeansThreshold |
Single cell RNA-sequencing (scRNA-seq) peripheral blood (PBMC) data sample. | pbmc.rna.mat |
Reduced rank reconstruction (RRR) of a matrix. | randomizedRRR |
Abundance estimation for single cell RNA-sequencing (scRNA-seq) data. | speck |