Package: SPECK (via r-universe)

September 13, 2024

```
Type Package
```

Title Receptor Abundance Estimation using Reduced Rank Reconstruction and Clustered Thresholding

Version 1.0.0

Maintainer Azka Javaid <azka.javaid.gr@dartmouth.edu>

Description Surface Protein abundance Estimation using CKmeans-based clustered thresholding ('SPECK') is an unsupervised learning-based method that performs receptor abundance estimation for single cell RNA-sequencing data based on reduced rank reconstruction (RRR) and a clustered thresholding mechanism. Seurat's normalization method is described in: Hao et al., (2021) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1016/j.cell.2021.04.048>, Stuart et al., (2019) <doi:10.1038/nbt.4096> and Satija et al., (2015) <doi:10.1038/nbt.3192>. Method for the RRR is further detailed in: Erichson et al., (2019) <doi:10.18637/jss.v089.i11> and Halko et al., (2009) <arXiv:0909.4061>. Clustering method is outlined in: Song et al., (2020) <doi:10.1093/bioinformatics/btaa613> and Wang et al., (2011) <doi:10.32614/RJ-2011-015>.

License GPL (>= 2)

Encoding UTF-8

LazyData true

RoxygenNote 7.2.3

Suggests ggplot2, gridExtra, knitr, rmarkdown, SeuratObject, usethis

VignetteBuilder knitr

Depends R (>= 2.10)

Imports Ckmeans.1d.dp, magrittr, Matrix (>= 1.6.1.1), rsvd, Seurat

NeedsCompilation no

Author H. Robert Frost [aut], Azka Javaid [aut, cre]

Repository CRAN

Date/Publication 2023-11-17 17:30:02 UTC

2 ckmeansThreshold

Contents

	ckmea pbmc.r	rna.m	at																							3
	speck												 •													4
Index																										7
ckmeansThreshold Clustered thresholding of a vector.																										

Description

Performs thresholding for a vector of length m from a corresponding mxn reduced rank reconstructed (RRR) matrix. Thresholding of a vector is only performed if more than one cluster is identified using the Ckmeans.1d.dp::Ckmeans.1d.dp() function based on a one-dimensional dynamic programming clustering algorithm, which functions by minimizing the sum of squares of within-cluster distances from an element to its associated cluster mean. If more than one cluster is present, then the RRR output corresponding to the nonzero elements of the least-valued cluster, as identified by the cluster mean, is set to zero. All other values in the least and higher-valued clusters are retained.

Usage

```
ckmeansThreshold(rrr.vector, max.num.clusters = 4, seed.ckmeans = 2)
```

Arguments

```
\begin{array}{lll} {\tt rrr.vector} & {\tt Vector\ of\ length\ } m\ {\tt from\ the\ corresponding\ } mxn\ {\tt RRR\ matrix}. \\ {\tt max.num.clusters} & {\tt Maximum\ number\ of\ clusters\ for\ computation}. \\ {\tt seed.ckmeans} & {\tt Seed\ specified\ to\ ensure\ reproducibility\ of\ the\ clustered\ thresholding}. \end{array}
```

Value

- rrr.thresholded.vector A thresholded vector of length m.
- num.centers Number of identified clusters.
- max.clust.prop Proportion of samples with the specified maximum number of clusters.

Examples

```
set.seed(10)
data.mat <- matrix(data = rbinom(n = 18400, size = 230, prob = 0.01), nrow = 80)
rrr.object <- randomizedRRR(counts.matrix = data.mat, rank.range.end = 60,
min.consec.diff = 0.01, rep.consec.diff = 2,
manual.rank = NULL, seed.rsvd = 1)
thresh.full.output <- ckmeansThreshold(rrr.vector = rrr.object$rrr.mat[,1],</pre>
```

pbmc.rna.mat 3

```
max.num.clusters = 4, seed.ckmeans = 2)
head(thresh.full.output$rrr.thresholded.vector)
print(thresh.full.output$num.centers)
print(thresh.full.output$max.clust.prop)
```

pbmc.rna.mat

Single cell RNA-sequencing (scRNA-seq) peripheral blood (PBMC) data sample.

Description

Single cell RNA-sequencing (scRNA-seq) subset of the Hao et al. 2021 human peripheral blood mononuclear cell (PBMC) data (GEO: GSE164378, DOI: 10.1016/j.cell.2021.04.048).

Usage

```
pbmc.rna.mat
```

Format

A scRNA-seq data of dgCMatrix class with 1000 rows and 33538 columns

pbmc.rna.mat RNA expression data for 1000 cells and 33538 genes

randomizedRRR

Reduced rank reconstruction (RRR) of a matrix.

Description

Computes the rank and subsequent RRR of a mxn counts matrix. Log-normalization is first performed using the Seurat::NormalizeData() function. RRR is next performed on the normalized mxn matrix using randomized Singular Value Decomposition with the rsvd::rsvd() function. Estimated rank is selected via a construction of the standard deviations of non-centered sample principal components, which are used in a subsequent rate of change computation where each successive standard deviation value is compared to the previous to determine the rank at which the absolute value of the rate of change between consecutive values is at least 0.01 for at least two value pairs.

Usage

```
randomizedRRR(
  counts.matrix,
  rank.range.end = 100,
  min.consec.diff = 0.01,
  rep.consec.diff = 2,
  manual.rank = NULL,
  seed.rsvd = 1
)
```

4 speck

Arguments

counts.matrix A mxn counts matrix.

rank.range.end Upper value of the rank for RRR.

min.consec.diff

Minimum difference in the rate of change between a pair of successive standard deviation estimate.

rep.consec.diff

Frequency of the minimum difference in the rate of change between a pair of successive standard deviation estimate.

manual.rank

Optional, user-specified upper value of the rank used for RRR as an alternative to automatically computed rank.

seed.rsvd

Seed specified to ensure reproducibility of the RRR.

Value

- rrr.mat A mxn RRR matrix.
- rrr.rank Automatically computed rank.
- component.stdev A vector corresponding to standard deviations of non-centered sample principal components.

Examples

```
set.seed(10)
data.mat <- matrix(data = rbinom(n = 18400, size = 230, prob = 0.2), nrow = 80)
rrr.object <- randomizedRRR(counts.matrix = data.mat, rank.range.end = 60,
min.consec.diff = 0.01, rep.consec.diff = 2,
manual.rank = NULL, seed.rsvd = 1)
print(rrr.object$component.stdev)
print(rrr.object$rrr.rank)
dim(rrr.object$rrr.mat); str(rrr.object$rrr.mat)</pre>
```

speck

Abundance estimation for single cell RNA-sequencing (scRNA-seq) data.

Description

Performs normalization, reduced rank reconstruction (RRR) and thresholding for a mxn scRNA-seq matrix with m samples and n genes. The speck() function calls the randomizedRRR() function on the scRNA-seq matrix. Thresholding is next applied to each gene from the mxn RRR matrix using the ckmeansThreshold() function, resulting in a mxn thresholded matrix. See documentation for the randomizedRRR() and ckmeansThreshold() functions for individual implementation details.

speck 5

Usage

```
speck(
  counts.matrix,
  rank.range.end = 100,
  min.consec.diff = 0.01,
  rep.consec.diff = 2,
  manual.rank = NULL,
  max.num.clusters = 4,
  seed.rsvd = 1,
  seed.ckmeans = 2
)
```

Arguments

counts.matrix mxn scRNA-seq counts matrix with m samples and n genes. rank.range.end Upper value of the rank for RRR. min.consec.diff

Minimum difference in the rate of change between a pair of successive standard deviation estimate.

rep.consec.diff

Frequency of the minimum difference in the rate of change between a pair of successive standard deviation estimate.

manual.rank Optional, user-specified upper value of the rank used for RRR as an alternative to automatically computed rank.

max.num.clusters

Maximum number of clusters for computation.

seed.rsvd Seed specified to ensure reproducibility of the RRR.

seed.ckmeans Seed specified to ensure reproducibility of the clustered thresholding.

Value

- thresholded.mat A mxn thresholded RRR matrix with m samples and n genes.
- rrr.mat A mxn RRR matrix with m samples and n genes.
- rrr.rank Automatically computed rank.
- component.stdev A vector corresponding to standard deviations of non-centered sample principal components.
- clust.num A vector of length n indicating the number of clusters identified by the Ckmeans . 1d . dp() algorithm for each gene.
- clust.max.prop A vector of length n indicating the proportion of samples with the specified maximum number of clusters for each gene.

Examples

```
set.seed(10)
data.mat <- matrix(data = rbinom(n = 18400, size = 230, prob = 0.01), nrow = 80)
speck.full <- speck(counts.matrix = data.mat, rank.range.end = 60,</pre>
```

6 speck

```
min.consec.diff = 0.01, rep.consec.diff = 2,
manual.rank = NULL, max.num.clusters = 4,
seed.rsvd = 1, seed.ckmeans = 2)
print(speck.full$component.stdev)
print(speck.full$rrr.rank)
head(speck.full$clust.num); table(speck.full$clust.num)
head(speck.full$clust.max.prop); table(speck.full$clust.max.prop)
speck.output <- speck.full$thresholded.mat
dim(speck.output); str(speck.output)</pre>
```

Index

```
* datasets
    pbmc.rna.mat, 3

Ckmeans.1d.dp(), 5
Ckmeans.1d.dp::Ckmeans.1d.dp(), 2
ckmeansThreshold, 2
ckmeansThreshold(), 4

pbmc.rna.mat, 3

randomizedRRR, 3
randomizedRRR(), 4
rsvd::rsvd(), 3

Seurat::NormalizeData(), 3
speck, 4
speck(), 4
```