Package: l1spectral 0.99.6
Magali Champion
l1spectral: An L1-Version of the Spectral Clustering
Provides an l1-version of the spectral clustering algorithm devoted to robustly clustering highly perturbed graphs using l1-penalty. This algorithm is described with more details in the preprint C. Champion, M. Champion, M. Blazère, R. Burcelin and J.M. Loubes, "l1-spectral clustering algorithm: a spectral clustering method using l1-regularization" (2022).
Authors:
l1spectral_0.99.6.tar.gz
l1spectral_0.99.6.tar.gz(r-4.5-noble)l1spectral_0.99.6.tar.gz(r-4.4-noble)
l1spectral_0.99.6.tgz(r-4.4-emscripten)l1spectral_0.99.6.tgz(r-4.3-emscripten)
l1spectral.pdf |l1spectral.html✨
l1spectral/json (API)
# Install 'l1spectral' in R: |
install.packages('l1spectral', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- ToyData - Toy data for running the l1-spectral clustering algorithm
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:e85450abac. Checks:OK: 1 NOTE: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 21 2024 |
R-4.5-linux-x86_64 | NOTE | Dec 21 2024 |
Exports:ComputePerformancesCreateDataSetFindElementFindNbrClustersFindStructurel1_spectrall1_spectralclusteringPenOpt
Dependencies:aricodecaretclasscliclockcodetoolscolorspacecpp11cvToolsdata.tableDEoptimRdiagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2glmnetglobalsgluegowergtablehardhatigraphipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcppRcppArmadilloRcppEigenrecipesreshape2rlangrobustbaserpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Description of the package | l1spectral |
Compute the performances of the l1-spectral clustering algorithm | ComputePerformances |
Create data set | CreateDataSet |
Find the representative elements of the clusters | FindElement |
Find the optimal number of clusters | FindNbrClusters |
Find the structure of the graph from the adjacency matrix | FindStructure |
Run the l1-spectral clustering algorithm | l1_spectralclustering |
Toy data for running the l1-spectral clustering algorithm | ToyData |