Package: LogicForest 2.1.1

Melica Nikahd

LogicForest: Logic Forest

Two classification ensemble methods based on logic regression models. LogForest() uses a bagging approach to construct an ensemble of logic regression models. LBoost() uses a combination of boosting and cross-validation to construct an ensemble of logic regression models. Both methods are used for classification of binary responses based on binary predictors and for identification of important variables and variable interactions predictive of a binary outcome. Wolf, B.J., Slate, E.H., Hill, E.G. (2010) <doi:10.1093/bioinformatics/btq354>.

Authors:Bethany Wolf [aut], Melica Nikahd [ctb, cre], Madison Hyer [ctb]

LogicForest_2.1.1.tar.gz
LogicForest_2.1.1.tar.gz(r-4.5-noble)LogicForest_2.1.1.tar.gz(r-4.4-noble)
LogicForest_2.1.1.tgz(r-4.4-emscripten)LogicForest_2.1.1.tgz(r-4.3-emscripten)
LogicForest.pdf |LogicForest.html
LogicForest/json (API)

# Install 'LogicForest' in R:
install.packages('LogicForest', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 1 stars 289 downloads 8 exports 4 dependencies

Last updated 1 years agofrom:004ed81370. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 09 2025
R-4.5-linuxOKMar 09 2025
R-4.4-linuxOKMar 09 2025

Exports:logforestp.combosPermspimp.importpimp.matprime.impproportion.positiveTTab

Dependencies:latticeLogicRegMatrixsurvival

Introduction to Logic Forest

Rendered fromIntro_to_logicforest.Rmdusingknitr::rmarkdownon Mar 09 2025.

Last update: 2024-03-14
Started: 2024-03-14