Package: GSSE 0.1
Baosheng Liang
GSSE: Genotype-Specific Survival Estimation
We propose a fully efficient sieve maximum likelihood method to estimate genotype-specific distribution of time-to-event outcomes under a nonparametric model. We can handle missing genotypes in pedigrees. We estimate the time-dependent hazard ratio between two genetic mutation groups using B-splines, while applying nonparametric maximum likelihood estimation to the reference baseline hazard function. The estimators are calculated via an expectation-maximization algorithm.
Authors:
GSSE_0.1.tar.gz
GSSE_0.1.tar.gz(r-4.5-noble)GSSE_0.1.tar.gz(r-4.4-noble)
GSSE_0.1.tgz(r-4.4-emscripten)GSSE_0.1.tgz(r-4.3-emscripten)
GSSE.pdf |GSSE.html✨
GSSE/json (API)
# Install 'GSSE' in R: |
install.packages('GSSE', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- Simulated_data - Simulated Parkinson's disease data
- p0G_data - Data Set for Illustration of the 'p0G' Calculation
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 9 years agofrom:93e106f7a2. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-linux | OK | Nov 12 2024 |
Exports:EM_PAVA_Funcp0G_FuncPermutation_TestSieve_NPMLE_BootstrapSieve_NPMLE_Switchtest_stat
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Genotype-Specific Survival Estimation | GSSE-package GSSE |
EM-PAVA function | EM_PAVA_Func |
Data Set for Illustration of the `p0G' Calculation | p0G_data |
Probability Calculation of Relative's Mutation Status | p0G_Func |
Permutation Test | Permutation_Test |
Sieve_NPMLE_Bootstrap function | Sieve_NPMLE_Bootstrap |
Sieve_NPMLE_Switch function | Sieve_NPMLE_Switch |
Simulated Parkinson's disease data | Simulated_data |
Kolmogorov-Smirnov Test Statistic | test_stat |