Package: otrimle 2.0

Pietro Coretto
otrimle: Robust Model-Based Clustering
Performs robust cluster analysis allowing for outliers and noise that cannot be fitted by any cluster. The data are modelled by a mixture of Gaussian distributions and a noise component, which is an improper uniform distribution covering the whole Euclidean space. Parameters are estimated by (pseudo) maximum likelihood. This is fitted by a EM-type algorithm. See Coretto and Hennig (2016) <doi:10.1080/01621459.2015.1100996>, and Coretto and Hennig (2017) <https://jmlr.org/papers/v18/16-382.html>.
Authors:
otrimle_2.0.tar.gz
otrimle_2.0.tar.gz(r-4.5-noble)otrimle_2.0.tar.gz(r-4.4-noble)
otrimle_2.0.tgz(r-4.4-emscripten)otrimle_2.0.tgz(r-4.3-emscripten)
otrimle.pdf |otrimle.html✨
otrimle/json (API)
NEWS
# Install 'otrimle' in R: |
install.packages('otrimle', repos = 'https://cloud.r-project.org') |
- banknote - Swiss Banknotes Data
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:14c0d74625. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 08 2025 |
R-4.5-linux | OK | Mar 08 2025 |
R-4.4-linux | OK | Mar 08 2025 |
Exports:generator.otrimleInitClustkerndensclusterkerndensmeasurekerndenspkmeanfunksdfunotrimleotrimlegotrimlesimgplot.summary.otrimlesimgdensprint.summary.otrimlesimgdensrimlesummary.otrimlesimgdens
Dependencies:codetoolsDEoptimRdoParallelforeachiteratorsmclustmvtnormrobustbase
Citation
To cite package 'otrimle' in publications use:
P. Coretto and C. Hennig (2021). otrimle: Robust Model-Based Clustering. R package version 2.0url: https://CRAN.R-project.org/package=otrimle
P. Coretto and C. Hennig (2016). Robust improper maximum likelihood: tuning, computation, and a comparison with other methods for robust Gaussian clustering. Journal of the American Statistical Association, Vol. 111(516), pp. 1648-1659.<doi:10.1080/01621459.2015.1100996>
P. Coretto and C. Hennig (2017). Consistency, breakdown robustness, and algorithms for robust improper maximum likelihood clustering. Journal of Machine Learning Research, Vol. 18(142), pp. 1-39
Corresponding BibTeX entries:
@Manual{, title = {otrimle: Robust Model-Based Clustering}, author = {Pietro Coretto and Christian Hennig}, year = {2021}, note = {R package version 2.0}, }
@Article{, title = {Robust improper maximum likelihood: tuning, computation, and a comparison with other methods for robust Gaussian clustering}, author = {Pietro Coretto and Christian Hennig}, year = {2016}, journal = {Journal of the American Statistical Association}, volume = {111}, number = {516}, pages = {1648--1659}, doi = {10.1080/01621459.2015.1100996}, }
@Article{, title = {Consistency, breakdown robustness, and algorithms for robust improper maximum likelihood clustering}, author = {Pietro Coretto and Christian Hennig}, year = {2016}, journal = {Journal of Machine Learning Research}, volume = {18}, number = {142}, pages = {1--39}, url = {https://jmlr.org/papers/v18/16-382.html}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Swiss Banknotes Data | banknote |
Generates random data from OTRIMLE output model | generator.otrimle |
Robust Initialization for Model-based Clustering Methods | InitClust |
Aggregated distance to elliptical unimodal density over clusters | kerndenscluster |
Statistic measuring closeness to symmetric unimodal distribution | kerndensmeasure |
Closeness of multivariate distribution to elliptical unimodal distribution | kerndensp |
Mean and standard deviation of unimodality statistic | kmeanfun ksdfun |
Optimally Tuned Robust Improper Maximum Likelihood Clustering | otrimle print.otrimle |
OTRIMLE for a range of numbers of clusters with density-based cluster quality statistic | otrimleg |
Adequacy approach for number of clusters for OTRIMLE | otrimlesimg plot.summary.otrimlesimgdens print.summary.otrimlesimgdens summary.otrimlesimgdens |
Plot Methods for OTRIMLE Objects | plot.otrimle |
Plot Methods for RIMLE Objects | plot.rimle |
Robust Improper Maximum Likelihood Clustering | print.rimle rimle |