Package: MatrixHMM 1.0.0
Salvatore D. Tomarchio
MatrixHMM: Parsimonious Families of Hidden Markov Models for Matrix-Variate Longitudinal Data
Implements three families of parsimonious hidden Markov models (HMMs) for matrix-variate longitudinal data using the Expectation-Conditional Maximization (ECM) algorithm. The package supports matrix-variate normal, t, and contaminated normal distributions as emission distributions. For each hidden state, parsimony is achieved through the eigen-decomposition of the covariance matrices associated with the emission distribution. This approach results in a comprehensive set of 98 parsimonious HMMs for each type of emission distribution. Atypical matrix detection is also supported, utilizing the fitted (heavy-tailed) models.
Authors:
MatrixHMM_1.0.0.tar.gz
MatrixHMM_1.0.0.tar.gz(r-4.5-noble)MatrixHMM_1.0.0.tar.gz(r-4.4-noble)
MatrixHMM_1.0.0.tgz(r-4.4-emscripten)MatrixHMM_1.0.0.tgz(r-4.3-emscripten)
MatrixHMM.pdf |MatrixHMM.html✨
MatrixHMM/json (API)
# Install 'MatrixHMM' in R: |
install.packages('MatrixHMM', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 months agofrom:2625f5a46e. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Oct 28 2024 |
R-4.5-linux | OK | Oct 28 2024 |
Exports:atp.MVCNatp.MVTEigen.HMM_fitEigen.HMM_initextract.bestMr.HMM
Dependencies:clicodetoolscpp11crayondata.tabledoSNOWdplyrfansiforeachgenericsgluehmsiteratorsLaplacesDemonlifecyclemagrittrmclustpillarpkgconfigprettyunitsprogresspurrrR6rlangsnowstringistringrtensortibbletidyrtidyselectutf8vctrswithr