Title: | Parsimonious Families of Hidden Markov Models for Matrix-Variate Longitudinal Data |
---|---|
Description: | Implements three families of parsimonious hidden Markov models (HMMs) for matrix-variate longitudinal data using the Expectation-Conditional Maximization (ECM) algorithm. The package supports matrix-variate normal, t, and contaminated normal distributions as emission distributions. For each hidden state, parsimony is achieved through the eigen-decomposition of the covariance matrices associated with the emission distribution. This approach results in a comprehensive set of 98 parsimonious HMMs for each type of emission distribution. Atypical matrix detection is also supported, utilizing the fitted (heavy-tailed) models. |
Authors: | Salvatore D. Tomarchio [aut, cre] |
Maintainer: | Salvatore D. Tomarchio <[email protected]> |
License: | GPL (>= 3) |
Version: | 1.0.0 |
Built: | 2024-10-28 07:00:45 UTC |
Source: | CRAN |
Detects atypical matrices via matrix-variate contaminated normal Hidden Markov Models.
atp.MVCN(Y, pgood, class)
atp.MVCN(Y, pgood, class)
Y |
An array with dimensions |
pgood |
An array with dimensions |
class |
An |
An num
x t
matrix containing, for each observation and time, a 0 if it that matrix is typical and 1 otherwise.
data("simData2") Y <- simData2$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVCN", mod.row = "EEE", mod.col = "EE", nstartR = 1) fit <- Eigen.HMM_fit(Y = Y, init.par = init, nThreads = 1) atp <- atp.MVCN(Y = Y, pgood = fit[["results"]][[1]][[1]][[1]][["pgood"]], class = fit[["results"]][[1]][[1]][[1]][["class"]]) which(atp==1) which(simData2[["atp.tr"]]==1)
data("simData2") Y <- simData2$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVCN", mod.row = "EEE", mod.col = "EE", nstartR = 1) fit <- Eigen.HMM_fit(Y = Y, init.par = init, nThreads = 1) atp <- atp.MVCN(Y = Y, pgood = fit[["results"]][[1]][[1]][[1]][["pgood"]], class = fit[["results"]][[1]][[1]][[1]][["class"]]) which(atp==1) which(simData2[["atp.tr"]]==1)
Detects atypical matrices via matrix-variate t Hidden Markov Models given a specified value of epsilon
.
atp.MVT(Y, M, U, V, class, epsilon)
atp.MVT(Y, M, U, V, class, epsilon)
Y |
An array with dimensions |
M |
An array with dimensions |
U |
An array with dimensions |
V |
An array with dimensions |
class |
An |
epsilon |
A numeric value specifying the selected percentile of the chi-squared distribution with |
An num
x t
matrix containing, for each observation and time, a 0 if it that matrix is typical and 1 otherwise.
data("simData2") Y <- simData2$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVT", mod.row = "EEE", mod.col = "EE", nstartR = 1) fit <- Eigen.HMM_fit(Y = Y, init.par = init, nThreads = 1) atp <- atp.MVT(Y = Y, M = fit[["results"]][[1]][[1]][[1]][["M"]], U = fit[["results"]][[1]][[1]][[1]][["U"]], V = fit[["results"]][[1]][[1]][[1]][["V"]], class = fit[["results"]][[1]][[1]][[1]][["class"]], epsilon = 0.99) which(atp==1) which(simData2[["atp.tr"]]==1)
data("simData2") Y <- simData2$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVT", mod.row = "EEE", mod.col = "EE", nstartR = 1) fit <- Eigen.HMM_fit(Y = Y, init.par = init, nThreads = 1) atp <- atp.MVT(Y = Y, M = fit[["results"]][[1]][[1]][[1]][["M"]], U = fit[["results"]][[1]][[1]][[1]][["U"]], V = fit[["results"]][[1]][[1]][[1]][["V"]], class = fit[["results"]][[1]][[1]][[1]][["class"]], epsilon = 0.99) which(atp==1) which(simData2[["atp.tr"]]==1)
Fits parsimonious Hidden Markov Models for matrix-variate longitudinal data using ECM algorithms. The models are based on the matrix-variate normal, matrix-variate t, and matrix-variate contaminated normal distributions. Parallel computing is implemented and highly recommended for faster model fitting.
Eigen.HMM_fit( Y, init.par = NULL, tol = 0.001, maxit = 500, nThreads = 1, verbose = FALSE )
Eigen.HMM_fit( Y, init.par = NULL, tol = 0.001, maxit = 500, nThreads = 1, verbose = FALSE )
Y |
An array with dimensions |
init.par |
A list of initial values for starting the algorithms, as generated by the |
tol |
A numeric value specifying the tolerance level for the ECM algorithms' convergence. |
maxit |
A numeric value specifying the maximum number of iterations for the ECM algorithms. |
nThreads |
A positive integer indicating the number of cores to use for parallel processing. |
verbose |
A logical value indicating whether to display the running output. |
A list containing the following elements:
results |
A list of the results from the fitted models. |
c.time |
A numeric value providing information on the computational time required to fit all models for each state. |
models |
A data frame listing the models that were fitted. |
data(simData) Y <- simData$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVT", mod.row = "EEE", mod.col = "EE", nstartR = 10) fit <- Eigen.HMM_fit(Y = Y, init.par = init, nThreads = 1)
data(simData) Y <- simData$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVT", mod.row = "EEE", mod.col = "EE", nstartR = 10) fit <- Eigen.HMM_fit(Y = Y, init.par = init, nThreads = 1)
Initializes the ECM algorithms used for fitting parsimonious matrix-variate Hidden Markov Models (HMMs). Parallel computing is implemented and highly recommended for faster computations.
Eigen.HMM_init( Y, k, density, mod.row = "all", mod.col = "all", nstartR = 50, nThreads = 1, verbose = FALSE, seed = 3 )
Eigen.HMM_init( Y, k, density, mod.row = "all", mod.col = "all", nstartR = 50, nThreads = 1, verbose = FALSE, seed = 3 )
Y |
An array with dimensions |
k |
An integer or vector indicating the number of states in the model(s). |
density |
A character string specifying the distribution to use in the HMM. Possible values are: "MVN" for the matrix-variate normal distribution, "MVT" for the matrix-variate t-distribution, and "MVCN" for the matrix-variate contaminated normal distribution. |
mod.row |
A character string indicating the parsimonious structure of the row covariance (or scale) matrices. Possible values are: "EII", "VII", "EEI", "VEI", "EVI", "VVI", "EEE", "VEE", "EVE", "EEV", "VVE", "VEV", "EVV", "VVV", or "all". When "all" is specified, all 14 parsimonious structures are considered. |
mod.col |
A character string indicating the parsimonious structure of the column covariance (or scale) matrices. Possible values are: "II", "EI", "VI", "EE", "VE", "EV", "VV", or "all". When "all" is specified, all 7 parsimonious structures are considered. |
nstartR |
An integer specifying the number of random starts to consider. |
nThreads |
A positive integer indicating the number of cores to use for parallel processing. |
verbose |
A logical value indicating whether to display the running output. |
seed |
A positive integer specifying the seed for random generation. |
A list containing the following elements:
results |
A list of the results from the initialization. |
k |
The number of states fitted in each model. |
req.model |
A data frame listing the models that were initialized. |
init.used |
A data frame listing the initializations used for the required models. |
index |
A numeric vector to be used by the |
dens |
The density used for the HMMs. |
data(simData) Y <- simData$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVT", mod.row = "EEE", mod.col = "EE", nstartR = 10)
data(simData) Y <- simData$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVT", mod.row = "EEE", mod.col = "EE", nstartR = 10)
This functions extracts the best fitting model(s) according to the Bayesian information criterion (BIC).
extract.bestM(results, top = 1)
extract.bestM(results, top = 1)
results |
The output of the |
top |
Integer. Specifies the number of top-ranked models to display based on the Bayesian Information Criterion (BIC). |
A list containing the required best fitting model(s).
data(simData) Y <- simData$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVT", mod.row = "EEE", mod.col = "EE", nstartR = 10) fit <- Eigen.HMM_fit(Y = Y, init.par = init, nThreads = 1) win <- extract.bestM(results = fit, top = 1)
data(simData) Y <- simData$Y init <- Eigen.HMM_init(Y = Y, k = 2, density = "MVT", mod.row = "EEE", mod.col = "EE", nstartR = 10) fit <- Eigen.HMM_fit(Y = Y, init.par = init, nThreads = 1) win <- extract.bestM(results = fit, top = 1)
Generates random numbers for matrix-variate Hidden Markov Models (HMMs) based on matrix-variate normal, t, and contaminated normal distributions.
r.HMM(density, num, t, PI, M, U, V, IP, nu, alpha, eta)
r.HMM(density, num, t, PI, M, U, V, IP, nu, alpha, eta)
density |
A character string specifying the distribution to use for the HMM. Possible values are: "MVN" for the matrix-variate normal distribution, "MVT" for the matrix-variate t-distribution, and "MVCN" for the matrix-variate contaminated normal distribution. |
num |
An integer specifying the number of random matrices to generate. |
t |
An integer specifying the number of time points. |
PI |
A matrix representing the transition probability matrix. |
M |
An array with dimensions |
U |
An array with dimensions |
V |
An array with dimensions |
IP |
A numeric vector of length |
nu |
A numeric vector of length |
alpha |
A numeric vector of length |
eta |
A numeric vector of length |
A list containing the following elements:
Y |
An array with dimensions |
obs.states |
An |
p <- 2 r <- 3 num <- 50 t <- 3 k <- 2 IP <- c(0.5, 0.5) PI <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow = k, ncol = k, byrow = TRUE) M <- array(NA, dim = c(p, r, k)) M[,,1]<- matrix(c(0,1,1, -1,-1.5,-1),nrow = p, ncol = r, byrow = TRUE) M[,,2]<- M[,,1]+3 U <- array(NA, dim = c(p, p, k)) V <- array(NA, dim = c(r, r, k)) U[, , 1] <- U[, , 2] <- matrix(c(1.73, -0.59, -0.59, 2.52), nrow = p, ncol = p, byrow = TRUE) V[, , 1] <- V[, , 2] <- matrix(c(0.69, 0.23, -0.03, 0.23, 0.48, 0.16, -0.03, 0.16, 0.88), nrow = r, ncol = r, byrow = TRUE) nu <- c(4.5, 6.5) simData <- r.HMM(density = "MVT", num = num, t = t, PI = PI, M = M, U = U, V = V, IP = IP, nu = nu)
p <- 2 r <- 3 num <- 50 t <- 3 k <- 2 IP <- c(0.5, 0.5) PI <- matrix(c(0.9, 0.1, 0.3, 0.7), nrow = k, ncol = k, byrow = TRUE) M <- array(NA, dim = c(p, r, k)) M[,,1]<- matrix(c(0,1,1, -1,-1.5,-1),nrow = p, ncol = r, byrow = TRUE) M[,,2]<- M[,,1]+3 U <- array(NA, dim = c(p, p, k)) V <- array(NA, dim = c(r, r, k)) U[, , 1] <- U[, , 2] <- matrix(c(1.73, -0.59, -0.59, 2.52), nrow = p, ncol = p, byrow = TRUE) V[, , 1] <- V[, , 2] <- matrix(c(0.69, 0.23, -0.03, 0.23, 0.48, 0.16, -0.03, 0.16, 0.88), nrow = r, ncol = r, byrow = TRUE) nu <- c(4.5, 6.5) simData <- r.HMM(density = "MVT", num = num, t = t, PI = PI, M = M, U = U, V = V, IP = IP, nu = nu)
A simulated dataset generated from a matrix-variate t Hidden Markov Model with 2 states and an EE - EE covariance structure.
data(simData)
data(simData)
A list containing two elements:
An array with p = 2
variables in the rows, r = 3
variables in the columns, num = 50
matrices, and t = 3
time points.
An num
x t
matrix containing the state memberships.
A simulated dataset containing atypical matrices. The data are initially generated from a matrix-variate normal Hidden Markov Model with 2 states and an EE - EE covariance structure. Atypical matrices are then introduced by randomly replacing some of the original matrices with values from a uniform distribution.
data(simData2)
data(simData2)
A list containing three elements:
An array with p = 2
variables in the rows, r = 3
variables in the columns, num = 50
matrices, and t = 3
time points.
An num
x t
matrix containing the state memberships.
An num
x t
matrix identifying the atypical matrices, where atypical matrices are coded with a 1.