Package: engression 0.1.4

Nicolai Meinshausen

engression: Engression Modelling

Fits engression models for nonlinear distributional regression. Predictors and targets can be univariate or multivariate. Functionality includes estimation of conditional mean, estimation of conditional quantiles, or sampling from the fitted distribution. Training is done full-batch on CPU (the python version offers GPU-accelerated stochastic gradient descent). Based on "Engression: Extrapolation for nonlinear regression?" by Xinwei Shen and Nicolai Meinshausen (2023). Also supports classification (experimental). <arxiv:2307.00835>.

Authors:Xinwei Shen [aut], Nicolai Meinshausen [aut, cre]

engression_0.1.4.tar.gz
engression_0.1.4.tar.gz(r-4.5-noble)engression_0.1.4.tar.gz(r-4.4-noble)
engression_0.1.4.tgz(r-4.4-emscripten)engression_0.1.4.tgz(r-4.3-emscripten)
engression.pdf |engression.html
engression/json (API)

# Install 'engression' in R:
install.packages('engression', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/xwshen51/engression/issues

1.00 score 180 downloads 1 exports 18 dependencies

Last updated 1 years agofrom:cdb9e25d1c. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 17 2024
R-4.5-linuxOKNov 17 2024

Exports:engression

Dependencies:bitbit64callrclicorodescellipsisgluejsonlitemagrittrprocessxpsR6Rcpprlangsafetensorstorchwithr