Package: lamle 0.3.1

Björn Andersson

lamle: Maximum Likelihood Estimation of Latent Variable Models

Approximate marginal maximum likelihood estimation of multidimensional latent variable models via adaptive quadrature or Laplace approximations to the integrals in the likelihood function, as presented for confirmatory factor analysis models in Jin, S., Noh, M., and Lee, Y. (2018) <doi:10.1080/10705511.2017.1403287>, for item response theory models in Andersson, B., and Xin, T. (2021) <doi:10.3102/1076998620945199>, and for generalized linear latent variable models in Andersson, B., Jin, S., and Zhang, M. (2023) <doi:10.1016/j.csda.2023.107710>. Models implemented include the generalized partial credit model, the graded response model, and generalized linear latent variable models for Poisson, negative-binomial and normal distributions. Supports a combination of binary, ordinal, count and continuous observed variables and multiple group models.

Authors:Björn Andersson [aut, cre], Shaobo Jin [aut], Maoxin Zhang [ctb]

lamle_0.3.1.tar.gz
lamle_0.3.1.tar.gz(r-4.5-noble)lamle_0.3.1.tar.gz(r-4.4-noble)
lamle_0.3.1.tgz(r-4.4-emscripten)lamle_0.3.1.tgz(r-4.3-emscripten)
lamle.pdf |lamle.html
lamle/json (API)
NEWS

# Install 'lamle' in R:
install.packages('lamle', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • openblas– Optimized BLAS
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblascppopenmp

1.00 score 204 downloads 7 exports 5 dependencies

Last updated 2 years agofrom:1ad72034fa. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 15 2025
R-4.5-linux-x86_64OKFeb 15 2025

Exports:DGPlamlelamle.computelamle.fitlamle.plotlamle.predictlamle.sim

Dependencies:fastGHQuadmvtnormnumDerivRcppRcppArmadillo