Package: ContaminatedMixt 1.3.8

Angelo Mazza
ContaminatedMixt: Clustering and Classification with the Contaminated Normal
Fits mixtures of multivariate contaminated normal distributions (with eigen-decomposed scale matrices) via the expectation conditional- maximization algorithm under a clustering or classification paradigm Methods are described in Antonio Punzo, Angelo Mazza, and Paul D McNicholas (2018) <doi:10.18637/jss.v085.i10>.
Authors:
ContaminatedMixt_1.3.8.tar.gz
ContaminatedMixt_1.3.8.tar.gz(r-4.5-noble)ContaminatedMixt_1.3.8.tar.gz(r-4.4-noble)
ContaminatedMixt_1.3.8.tgz(r-4.4-emscripten)ContaminatedMixt_1.3.8.tgz(r-4.3-emscripten)
ContaminatedMixt.pdf |ContaminatedMixt.html✨
ContaminatedMixt/json (API)
# Install 'ContaminatedMixt' in R: |
install.packages('ContaminatedMixt', repos = 'https://cloud.r-project.org') |
- wine - Wine Data Set
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:130631abc1. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 27 2025 |
R-4.5-linux-x86_64 | OK | Mar 27 2025 |
R-4.4-linux-x86_64 | OK | Mar 27 2025 |
Exports:agreeCNmixtCNmixtCVCNpredictdCNgetBestModelgetClustergetCVgetDetectiongetICgetPargetPosteriorgetSizem.steprCNwhichBestwhichBestCV
Dependencies:BHcaretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmclustmgcvmixturemnormtModelMetricsmunsellmvtnormnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcppRcppArmadilloRcppGSLrecipesreshape2rlangrpartscalesshapesparsevctrsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr
Citation
To cite ContaminatedMixt in publications use:
Punzo A, Mazza A, McNicholas PD (2018). “ContaminatedMixt: An R Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions.” Journal of Statistical Software, 85(10), 1–25. doi:10.18637/jss.v085.i10.
Corresponding BibTeX entry:
@Article{, title = {{ContaminatedMixt}: An {R} Package for Fitting Parsimonious Mixtures of Multivariate Contaminated Normal Distributions}, author = {Antonio Punzo and Angelo Mazza and Paul D. McNicholas}, journal = {Journal of Statistical Software}, year = {2018}, volume = {85}, number = {10}, pages = {1--25}, doi = {10.18637/jss.v085.i10}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
ContaminatedMixt - Parsimonious Mixtures of Contaminated Normal Distributions | ContaminatedMixt-package ContaminatedMixt |
Agreement Between Partitions | agree |
Fitting for the Parsimonious Mixtures of Contaminated Normal Distributions | CNmixt CNmixtCV |
Cluster Prediction | CNpredict predict.ContaminatedMixt |
Multivariate Contaminated Normal Distribution | dCN rCN |
Extractors for 'ContaminatedMixt' Class Objects. | getBestModel getCluster getCV getDetection getIC getPar getPosterior getSize print.ContaminatedMixt summary.ContaminatedMixt whichBest whichBestCV |
M-step of the EM algorithm for Parsimonious Normal Mixtures | m.step |
Scatterplot Matrix for ContaminatedMixt Objects | pairs.ContaminatedMixt |
Scatterplot for ContaminatedMixt Objects | plot.ContaminatedMixt |
Wine Data Set | wine |