Package: reportRmd 0.1.1

Lisa Avery

reportRmd: Tidy Presentation of Clinical Reporting

Streamlined statistical reporting in 'Rmarkdown' environments. Facilitates the automated reporting of descriptive statistics, multiple univariate models, multivariable models and tables combining these outputs. Plotting functions include customisable survival curves, forest plots from logistic and ordinal regression and bivariate comparison plots.

Authors:Lisa Avery [cre, aut], Ryan Del Bel [aut], Osvaldo Espin-Garcia [aut], Katherine Lajkosz [aut], Clarina Ong [aut], Tyler Pittman [aut], Anna Santiago [aut], Yanning Wang [ctr], Jessica Weiss [aut], Wei Xu [aut]

reportRmd_0.1.1.tar.gz
reportRmd_0.1.1.tar.gz(r-4.5-noble)reportRmd_0.1.1.tar.gz(r-4.4-noble)
reportRmd_0.1.1.tgz(r-4.4-emscripten)reportRmd_0.1.1.tgz(r-4.3-emscripten)
reportRmd.pdf |reportRmd.html
reportRmd/json (API)
NEWS

# Install 'reportRmd' in R:
install.packages('reportRmd', repos = 'https://cloud.r-project.org')
Datasets:
  • ctDNA - Tumour size change over time Longitudinal changes in tumour size since baseline for patients by changes in ctDNA status (clearance, decrease or increase) since baseline.
  • pembrolizumab - Survival data Survival status and ctDNA levels for patients receiving pembrolizumab
  • uvmodels - Aligning models and parameters

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.18 score 1 packages 234 downloads 28 exports 102 dependencies

Last updated 2 months agofrom:74456d0333. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 26 2025
R-4.5-linuxOKMar 26 2025
R-4.4-linuxOKMar 26 2025

Exports:clear_labelscrrRxexcelColexcelColLettersextract_labelsforestplot2forestplotMVforestplotUVforestplotUVMVggkmcifggkmcif_pasteggkmcif2nestTableoutTableplotuvreplace_plot_labelsrm_cifsumrm_compactsumrm_covsumrm_mvsumrm_survdiffrm_survsumrm_survtimerm_uv_mvrm_uvsumscrolling_tableset_labelsset_var_labels

Dependencies:abindaodbackportsbase64encbootbroombslibcachemcarcarDataclicmprskcolorspacecorrplotcowplotcpp11DerivdigestdoBydplyrevaluatefansifarverfastmapfontawesomeFormulafsgeepackgenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehighrhtmltoolsisobandjquerylibjsonlitekableExtraknitrlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivpanderpbkrtestpillarpkgconfigplyrpolynompurrrquantregR6rappdirsrbibutilsRColorBrewerRcppRcppEigenRdpackreformulasrlangrmarkdownrstatixrstudioapisassscalesSparseMstringistringrsurvivalsvglitesystemfontstibbletidyrtidyselecttinytexutf8vctrsviridisLitewithrxfunxml2yaml

reportRmd Package

Rendered fromreportRmd.Rmdusingknitr::rmarkdownon Mar 26 2025.

Last update: 2025-01-24
Started: 2022-10-17

Citation

To cite package ‘reportRmd’ in publications use:

Avery L, Del Bel R, Espin-Garcia O, Lajkosz K, Ong C, Pittman T, Santiago A, Weiss J, Xu W (2025). reportRmd: Tidy Presentation of Clinical Reporting. R package version 0.1.1, https://CRAN.R-project.org/package=reportRmd.

Corresponding BibTeX entry:

  @Manual{,
    title = {reportRmd: Tidy Presentation of Clinical Reporting},
    author = {Lisa Avery and Ryan {Del Bel} and Osvaldo Espin-Garcia
      and Katherine Lajkosz and Clarina Ong and Tyler Pittman and Anna
      Santiago and Jessica Weiss and Wei Xu},
    year = {2025},
    note = {R package version 0.1.1},
    url = {https://CRAN.R-project.org/package=reportRmd},
  }

Readme and manuals

reportRmd

The goal of reportRmd is to automate the reporting of clinical data in Rmarkdown environments. Functions include table one-style summary statistics, compilation of multiple univariate models, tidy output of multivariable models and side by side comparisons of univariate and multivariable models. Plotting functions include customisable survival curves, forest plots, and automated bivariate plots.

Installation

Installing from CRAN:

install.packages('reportRmd')

You can install the development version of reportRmd from GitHub with:

# install.packages("devtools")
devtools::install_github("biostatsPMH/reportRmd", ref="development")

New Features

  • new compact summary table function rm_compactsum
  • main functions are now pipeable
  • new function to use variable labels in ggplots replace_plot_labels

Documentation

Online Documentation

Examples

Summary statistics by Sex
library(reportRmd)
data("pembrolizumab")

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'),
show.tests=TRUE)
Full Sample (n=94) Female (n=58) Male (n=36) p-value StatTest
age 0.30 Wilcoxon Rank Sum
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
pdl1 0.76 Wilcoxon Rank Sum
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1
change ctdna group 0.84 Chi Sq
Decrease from baseline 33 (45) 19 (48) 14 (42)
Increase from baseline 40 (55) 21 (52) 19 (58)
Missing 21 18 3
Compact Table
pembrolizumab |> rm_compactsum( grp = 'sex',
xvars=c('age','pdl1','change_ctdna_group'))
Full Sample (n=94) Female (n=58) Male (n=36) p-value Missing
age 59.1 (49.5-68.7) 56.6 (45.8-67.8) 61.2 (52.0-69.4) 0.30 0
pdl1 0.0 (0.0-10.0) 0.5 (0.0-13.8) 0.0 (0.0-4.5) 0.76 1
change ctdna group - Increase from baseline 40 (55%) 21 (52%) 19 (58%) 0.84 21
Using Variable Labels
var_names <- data.frame(var=c("age","pdl1","change_ctdna_group"),
                          label=c('Age at study entry',
                                  'PD L1 percent',
                                  'ctDNA change from baseline to cycle 3'))

pembrolizumab <- set_labels(pembrolizumab,var_names)

rm_covsum(data=pembrolizumab, maincov = 'sex',
covs=c('age','pdl1','change_ctdna_group'))
Full Sample (n=94) Female (n=58) Male (n=36) p-value
Age at study entry 0.30
Mean (sd) 57.9 (12.8) 56.9 (12.6) 59.3 (13.1)
Median (Min,Max) 59.1 (21.1, 81.8) 56.6 (34.1, 78.2) 61.2 (21.1, 81.8)
PD L1 percent 0.76
Mean (sd) 13.9 (29.2) 15.0 (30.5) 12.1 (27.3)
Median (Min,Max) 0 (0, 100) 0.5 (0.0, 100.0) 0 (0, 100)
Missing 1 0 1
ctDNA change from baseline to cycle 3 0.84
Decrease from baseline 33 (45) 19 (48) 14 (42)
Increase from baseline 40 (55) 21 (52) 19 (58)
Missing 21 18 3
Multiple Univariate Regression Analyses
rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','pdl1','change_ctdna_group'))
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
OR(95%CI) p-value N Event
Age at study entry 0.96 (0.91, 1.00) 0.089 94 78
PD L1 percent 0.97 (0.95, 0.98) \<0.001 93 77
ctDNA change from baseline to cycle 3 0.002 73 58
Decrease from baseline Reference 33 19
Increase from baseline 28.74 (5.20, 540.18) 40 39
Tidy multivariable analysis
glm_fit <- glm(orr~change_ctdna_group+pdl1+cohort,
               family='binomial',
               data = pembrolizumab)
rm_mvsum(glm_fit,showN=T)
OR(95%CI) p-value N Event
ctDNA change from baseline to cycle 3 0.009 73 58
Decrease from baseline Reference 33 19
Increase from baseline 19.99 (2.08, 191.60) 40 39
PD L1 percent 0.97 (0.95, 1.00) 0.066 73 58
cohort 73 58
A Reference 14 11
B 2.6e+07 (0e+00, Inf) 1.00 11 11
C 4.2e+07 (0e+00, Inf) 1.00 10 10
D 0.07 (4.2e-03, 1.09) 0.057 10 3
E 0.44 (0.04, 5.10) 0.51 28 23
Combining univariate and multivariable models
uvsumTable <- rm_uvsum(data=pembrolizumab, response='orr',
covs=c('age','sex','pdl1','change_ctdna_group'),tableOnly = TRUE)
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...
#> Waiting for profiling to be done...

glm_fit <- glm(orr~change_ctdna_group+pdl1,
               family='binomial',
               data = pembrolizumab)
mvsumTable <- rm_mvsum(glm_fit,tableOnly = TRUE)

rm_uv_mv(uvsumTable,mvsumTable)
Unadjusted OR(95%CI) p Adjusted OR(95%CI) p (adj)
Age at study entry 0.96 (0.91, 1.00) 0.089
sex 0.11
Female Reference
Male 0.41 (0.13, 1.22)
PD L1 percent 0.97 (0.95, 0.98) \<0.001 0.98 (0.96, 1.00) 0.024
ctDNA change from baseline to cycle 3 0.002 0.004
Decrease from baseline Reference Reference
Increase from baseline 28.74 (5.20, 540.18) 24.71 (2.87, 212.70)
Simple survival summary table

Shows events, median survival, survival rates at different times and the log rank test. Does not allow for covariates or strata, just simple tests between groups

 rm_survsum(data=pembrolizumab,time='os_time',status='os_status',
 group="cohort",survtimes=c(12,24),
# group="cohort",survtimes=seq(12,36,12),
# survtimesLbls=seq(1,3,1),
 survtimesLbls=c(1,2),
 survtimeunit='yr')
Group Events/Total Median (95%CI) 1yr (95% CI) 2yr (95% CI)
A 12/16 8.30 (4.24, Not Estimable) 0.38 (0.20, 0.71) 0.23 (0.09, 0.59)
B 16/18 8.82 (4.67, 20.73) 0.32 (0.16, 0.64) 0.06 (9.6e-03, 0.42)
C 12/18 17.56 (7.95, Not Estimable) 0.61 (0.42, 0.88) 0.44 (0.27, 0.74)
D 4/12 Not Estimable (6.44, Not Estimable) 0.67 (0.45, 0.99) 0.67 (0.45, 0.99)
E 20/30 14.26 (9.69, Not Estimable) 0.63 (0.48, 0.83) 0.34 (0.20, 0.57)
Log Rank Test ChiSq 11.3 on 4 df
p-value 0.023
Summarise Cumulative incidence
library(survival)
data(pbc)
rm_cifsum(data=pbc,time='time',status='status',group=c('trt','sex'),
eventtimes=c(1825,3650),eventtimeunit='day')
#> 106 observations with missing data were removed.
Strata Event/Total 1825day (95% CI) 3650day (95% CI)
1, f 7/137 0.04 (0.01, 0.08) 0.06 (0.03, 0.12)
1, m 3/21 0.10 (0.02, 0.27) 0.16 (0.03, 0.36)
2, f 9/139 0.05 (0.02, 0.09) 0.09 (0.04, 0.17)
2, m 0/15 0e+00 (NA, NA) 0e+00 (NA, NA)
Gray’s Test ChiSq 3.3 on 3 df
p-value 0.35
Plotting survival curves
ggkmcif2(response = c('os_time','os_status'),
cov='cohort',
data=pembrolizumab)
Plotting odds ratios
require(ggplot2)
#> Loading required package: ggplot2
forestplotMV(glm_fit)
#> Warning in forestplotMV(glm_fit): NAs introduced by coercion
Plotting bivariate relationships

These plots are designed for quick inspection of many variables, not for publication.

require(ggplot2)
plotuv(data=pembrolizumab, response='orr',
covs=c('age','cohort','pdl1','change_ctdna_group'))
#> Boxplots not shown for categories with fewer than 20 observations.
#> Boxplots not shown for categories with fewer than 20 observations.
Replacing variable names with labels in ggplot
data("mtcars")
mtcars <- mtcars |> 
  dplyr::mutate(cyl = as.factor(cyl)) |>
  set_labels(data.frame(var=c("hp","mpg","cyl"),
                        label=c('Horsepower',
                                'Miles per gallon',
                                'Number of cylinders'))) 
p <- mtcars |> 
ggplot(aes(x=hp, y=mpg, color=cyl, shape=cyl)) +
    geom_point()
replace_plot_labels(p)

Help Manual

Help pageTopics
Add spaces to strings in LaTeXaddspace
fit box cox transformed linear modelboxcoxfitRx
Capitalize a stringcap
Clear variable labels from a data frameclear_labels
Get covariate summary dataframecovsum
fit crr modelcrrRx
Tumour size change over time Longitudinal changes in tumour size since baseline for patients by changes in ctDNA status (clearance, decrease or increase) since baseline.ctDNA
Retrieve columns number from spreadsheet columns specified as unquoted lettersexcelCol
Retrieve spreadsheet column letter-names from columns indicesexcelColLetters
Extract variable labels from labelled data frameextract_labels
Create a forest plot using ggplot2forestplot2
Create a multivariable forest plot using ggplot2forestplotMV
Create an univariable forest plot using ggplot2forestplotUV
Combine an univariable and multivariable forest plot using ggplot2forestplotUVMV
Specific p-value formattingformatp
Parameter Estimation for the Box-Cox TransformationgeoR_boxcoxfit
Plot KM and CIF curves with ggplotggkmcif
Plot KM and CIF curves with ggplotggkmcif_paste
Plot KM and CIF curves with ggplotggkmcif2
Bold strings in HTMLhbld
Bold strings in LaTeXlbld
Formats p-values for LaTeXlpvalue
Get multivariate summary dataframemvsum
Combine two table columns into a single column with levels of one nested within levels of the other.nestTable
Lean strings for printingnicename
Round retaining digitsniceNum
Print tables to PDF/Latex HTML or WordoutTable
Survival data Survival status and ctDNA levels for patients receiving pembrolizumabpembrolizumab
Plot multiple bivariate relationships in a single plotplotuv
Round and paste with parenthesespsthr
Paste with parenthesespstprn
Formats p-valuespvalue
Replace variable names with labels in ggplotreplace_plot_labels
Summarize cumulative incidence by grouprm_cifsum
Output a compact summary tablerm_compactsum
Outputs a descriptive covariate tablerm_covsum
Format a regression model nicely for 'Rmarkdown'rm_mvsum
Display event counts, expected event counts and logrank test of differencesrm_survdiff
Summarise survival data by grouprm_survsum
Display survival rates and events for specified timesrm_survtime
Combine univariate and multivariable regression tablesrm_uv_mv
Output several univariate models nicely in a single tablerm_uvsum
Replace dollar signs with html for proper HTML outputrmds
Sanitizes strings to not break LaTeXsanitizestr
Output a scrollable tablescrolling_table
Set variable labelsset_labels
Set variable labelsset_var_labels
Aligning models and parametersuvmodels
Get univariate summary dataframeuvsum