Package: ebmc 1.0.1

"Hsiang Hao, Chen"

ebmc: Ensemble-Based Methods for Class Imbalance Problem

Four ensemble-based methods (SMOTEBoost, RUSBoost, UnderBagging, and SMOTEBagging) for class imbalance problem are implemented for binary classification. Such methods adopt ensemble methods and data re-sampling techniques to improve model performance in presence of class imbalance problem. One special feature offers the possibility to choose multiple supervised learning algorithms to build weak learners within ensemble models. References: Nitesh V. Chawla, Aleksandar Lazarevic, Lawrence O. Hall, and Kevin W. Bowyer (2003) <doi:10.1007/978-3-540-39804-2_12>, Chris Seiffert, Taghi M. Khoshgoftaar, Jason Van Hulse, and Amri Napolitano (2010) <doi:10.1109/TSMCA.2009.2029559>, R. Barandela, J. S. Sanchez, R. M. Valdovinos (2003) <doi:10.1007/s10044-003-0192-z>, Shuo Wang and Xin Yao (2009) <doi:10.1109/CIDM.2009.4938667>, Yoav Freund and Robert E. Schapire (1997) <doi:10.1006/jcss.1997.1504>.

Authors:Hsiang Hao, Chen

ebmc_1.0.1.tar.gz
ebmc_1.0.1.tar.gz(r-4.5-noble)ebmc_1.0.1.tar.gz(r-4.4-noble)
ebmc_1.0.1.tgz(r-4.4-emscripten)ebmc_1.0.1.tgz(r-4.3-emscripten)
ebmc.pdf |ebmc.html
ebmc/json (API)

# Install 'ebmc' in R:
install.packages('ebmc', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.46 score 29 scripts 174 downloads 8 exports 35 dependencies

Last updated 3 years agofrom:c70b4c5b8b. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 23 2024
R-4.5-linuxOKNov 23 2024

Exports:adam2measurepredict.modelBagpredict.modelBstrussbagsboub

Dependencies:C50classclicpp11Cubistdbscane1071FNNFormulagenericsglueigraphinumlatticelibcoinlifecyclemagrittrMASSMatrixmvtnormpartykitpkgconfigplyrpROCproxyrandomForestRcppreshape2rlangrpartsmotefamilystringistringrsurvivalvctrs