Package: robustmatrix 0.1.3

Marcus Mayrhofer
robustmatrix: Robust Matrix-Variate Parameter Estimation
Robust covariance estimation for matrix-valued data and data with Kronecker-covariance structure using the Matrix Minimum Covariance Determinant (MMCD) estimators and outlier explanation using and Shapley values.
Authors:
robustmatrix_0.1.3.tar.gz
robustmatrix_0.1.3.tar.gz(r-4.5-noble)robustmatrix_0.1.3.tar.gz(r-4.4-noble)
robustmatrix_0.1.3.tgz(r-4.4-emscripten)robustmatrix_0.1.3.tgz(r-4.3-emscripten)
robustmatrix.pdf |robustmatrix.html✨
robustmatrix/json (API)
# Install 'robustmatrix' in R: |
install.packages('robustmatrix', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 5 months agofrom:22aa557a4f. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 17 2025 |
R-4.5-linux-x86_64 | OK | Mar 17 2025 |
R-4.4-linux-x86_64 | OK | Mar 17 2025 |
Exports:clean_prob_mmcdcstepmatrixShapleymmcdmmdmmlen_subsets_mmcdrmatnorm
Dependencies:rbibutilsRcppRcppArmadilloRdpack
Citation
To cite package 'robustmatrix' in publications, please use:
Mayrhofer M, Radojičić U, Filzmoser P (2024). robustmatrix: Robust Matrix-Variate Parameter Estimation R package version 0.1.3. Available at https://CRAN.R-project.org/package=robustmatrix.
To cite the related article, please use:
Mayrhofer M, Radojičić U, Filzmoser P (2024). Robust covariance estimation and explainable outlier detection for matrix-valued data. arXiv preprint arXiv:2403.03975. https://doi.org/10.48550/arXiv.2403.03975.
Corresponding BibTeX entries:
@Manual{, title = {robustmatrix: Robust Matrix-Variate Parameter Estimation}, author = {Marcus Mayrhofer and Una Radojičić and Peter Filzmoser}, year = {2024}, note = {R package version 0.1.3}, url = {https://CRAN.R-project.org/package=robustmatrix}, }
@Article{, title = {Robust covariance estimation and explainable outlier detection for matrix-valued data}, author = {Marcus Mayrhofer and Una Radojičić and Peter Filzmoser}, journal = {arXiv preprint arXiv:2403.03975}, year = {2024}, doi = {10.48550/arXiv.2403.03975}, }