Package: SpatialML 0.1.7

Stamatis Kalogirou

SpatialML: Spatial Machine Learning

Implements a spatial extension of the random forest algorithm (Georganos et al. (2019) <doi:10.1080/10106049.2019.1595177>). Allows for a geographically weighted random forest regression including a function to find the optical bandwidth. (Georganos and Kalogirou (2022) <https://www.mdpi.com/2220-9964/11/9/471>).

Authors:Stamatis Kalogirou [aut, cre], Stefanos Georganos [aut, ctb]

SpatialML_0.1.7.tar.gz
SpatialML_0.1.7.tar.gz(r-4.5-noble)SpatialML_0.1.7.tar.gz(r-4.4-noble)
SpatialML_0.1.7.tgz(r-4.4-emscripten)SpatialML_0.1.7.tgz(r-4.3-emscripten)
SpatialML.pdf |SpatialML.html
SpatialML/json (API)

# Install 'SpatialML' in R:
install.packages('SpatialML', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • Income - Mean household income at lcoal authorities in Greece in 2011

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.71 score 8 stars 32 scripts 294 downloads 2 mentions 5 exports 78 dependencies

Last updated 9 months agofrom:621a1dc467. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 28 2024
R-4.5-linuxNOTENov 28 2024

Exports:grfgrf.bwpredict.grfrandom.test.datarf.mtry.optim

Dependencies:caretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2globalsgluegowergtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6randomForestrangerRColorBrewerRcppRcppEigenrecipesreshape2rlangrpartscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr