Package: cml 0.2.2
Anh Tuan Bui
cml: Conditional Manifold Learning
Finds a low-dimensional embedding of high-dimensional data, conditioning on available manifold information. The current version supports conditional MDS (based on either conditional SMACOF in Bui (2021) <arxiv:2111.13646> or closed-form solution in Bui (2022) <doi:10.1016/j.patrec.2022.11.007>) and conditional ISOMAP in Bui (2021) <arxiv:2111.13646>.
Authors:
cml_0.2.2.tar.gz
cml_0.2.2.tar.gz(r-4.5-noble)cml_0.2.2.tar.gz(r-4.4-noble)
cml_0.2.2.tgz(r-4.4-emscripten)cml_0.2.2.tgz(r-4.3-emscripten)
cml.pdf |cml.html✨
cml/json (API)
# Install 'cml' in R: |
install.packages('cml', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:82a90e80a9. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 09 2024 |
R-4.5-linux | OK | Dec 09 2024 |
Exports:ccorcondDistcondDist2condIsomapcondMDScondMDSeigencondSmacofczmpinv
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Conditional Manifold Learning | cml-package cml |
Canonical Correlations | ccor |
Conditional Euclidean distance | condDist condDist2 |
Conditional ISOMAP | condIsomap |
Conditional Multidimensional Scaling | condMDS |
Conditional Multidimensional Scaling With Closed-Form Solution | condMDSeigen |
Conditional SMACOF | condSmacof |
C(Z) | cz |
Moore-Penrose Inverse | mpinv |