Package: evmix 2.12

Carl Scarrott
evmix: Extreme Value Mixture Modelling, Threshold Estimation and Boundary Corrected Kernel Density Estimation
The usual distribution functions, maximum likelihood inference and model diagnostics for univariate stationary extreme value mixture models are provided. Kernel density estimation including various boundary corrected kernel density estimation methods and a wide choice of kernels, with cross-validation likelihood based bandwidth estimator. Reasonable consistency with the base functions in the 'evd' package is provided, so that users can safely interchange most code.
Authors:
evmix_2.12.tar.gz
evmix_2.12.tar.gz(r-4.5-noble)evmix_2.12.tar.gz(r-4.4-noble)
evmix_2.12.tgz(r-4.4-emscripten)evmix_2.12.tgz(r-4.3-emscripten)
evmix.pdf |evmix.html✨
evmix/json (API)
# Install 'evmix' in R: |
install.packages('evmix', repos = 'https://cloud.r-project.org') |
Conda:r-evmix-2.12(2025-03-25)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:881298df04. Checks:1 OK, 2 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 04 2025 |
R-4.5-linux | NOTE | Mar 04 2025 |
R-4.4-linux | NOTE | Mar 04 2025 |
Exports:bckdenxbeta1bckdenxbeta2bckdenxcopulabckdenxcutnormbckdenxgamma1bckdenxgamma2bckdenxreflectbckdenxrenormbckdenxsimplecheck.bcmethodcheck.controlcheck.design.knotscheck.inputncheck.kbwcheck.kernelcheck.kinputscheck.logiccheck.ncheck.nncheck.nparamcheck.offsetcheck.optimcheck.paramcheck.phiucheck.posparamcheck.probcheck.quantcheck.textcvpsdendbckdendbckdengpddbckdengpdcondbetagpddbetagpdconddwmdensplotdgammagpddgammagpdcondgkgdgkgcondgngdgngcondgpddhpddhpdconditmgngditmnormgpdditmweibullgpddkdendkdengpddkdengpdcondlognormgpddlognormgpdcondmgammadmgammagpddmgammagpdcondnormgpddnormgpdcondpsdendpsdengpddweibullgpddweibullgpdconevmix.diagfbckdenfbckdengpdfbckdengpdconfbetagpdfbetagpdconfdwmfgammagpdfgammagpdconfgkgfgkgconfgngfgngconfgpdfhpdfhpdconfitmgngfitmnormgpdfitmweibullgpdfkdenfkdengpdfkdengpdconflognormgpdflognormgpdconfmgammafmgammagpdfmgammagpdconfnormgpdfnormgpdconfpsdenfpsdengpdfweibullgpdfweibullgpdconhillplotiwlspsdenka0ka1ka2kbwkdbiweightkdcosinekdenxkdepanechnikovkdgaussiankdoptcosinekdparzenkdtriangularkdtricubekdtriweightkduniformkdzklambdakpbiweightkpcosinekpepanechnikovkpgaussiankpoptcosinekpparzenkptriangularkptricubekptriweightkpuniformkpzlbckdenlbckdengpdlbckdengpdconlbetagpdlbetagpdconldwmlgammagpdlgammagpdconlgkglgkgconlgnglgngconlgpdlhpdlhpdconlitmgnglitmnormgpdlitmweibullgpdlkdenlkdengpdlkdengpdconllognormgpdllognormgpdconlmgammalmgammagpdlmgammagpdconlnormgpdlnormgpdconlpsdenlpsdengpdlweibullgpdlweibullgpdconmrlplotnlbckdennlbckdengpdnlbckdengpdconnlbetagpdnlbetagpdconnldwmnlEMmgammanlEMmgammagpdnlEMmgammagpdconnleuitmgngnleuitmnormgpdnleuitmweibullgpdnlgammagpdnlgammagpdconnlgkgnlgkgconnlgngnlgngconnlgpdnlhpdnlhpdconnlitmgngnlitmnormgpdnlitmweibullgpdnlkdennlkdengpdnlkdengpdconnllognormgpdnllognormgpdconnlmgammanlmgammagpdnlmgammagpdconnlnormgpdnlnormgpdconnlpsdennlpsdengpdnlubckdengpdnlubckdengpdconnlubetagpdnlubetagpdconnluEMmgammagpdnluEMmgammagpdconnlugammagpdnlugammagpdconnlugkgnlugkgconnlugngnlugngconnluhpdconnlukdengpdnlukdengpdconnlulognormgpdnlulognormgpdconnlumgammagpdnlumgammagpdconnlunormgpdnlunormgpdconnlupsdengpdnluweibullgpdnluweibullgpdconnlweibullgpdnlweibullgpdconpbckdenpbckdengpdpbckdengpdconpbckdenxbeta1pbckdenxbeta2pbckdenxcopulapbckdenxcutnormpbckdenxgamma1pbckdenxgamma2pbckdenxlogpbckdenxnnpbckdenxreflectpbckdenxrenormpbckdenxsimplepbetagpdpbetagpdconpdwmpgammagpdpgammagpdconpgkgpgkgconpgngpgngconpgpdphpdphpdconpickandsplotpitmgngpitmnormgpdpitmweibullgpdpkdenpkdengpdpkdengpdconpkdenxplognormgpdplognormgpdconpmgammapmgammagpdpmgammagpdconpnormgpdpnormgpdconpplotppsdenppsdengpdprofleuitmgngprofleuitmnormgpdprofleuitmweibullgpdproflubckdengpdproflubckdengpdconproflubetagpdproflubetagpdconproflugammagpdproflugammagpdconproflugkgproflugkgconproflugngproflugngconprofluhpdconproflukdengpdproflukdengpdconproflulognormgpdproflulognormgpdconproflumgammagpdproflumgammagpdconproflunormgpdproflunormgpdconproflupsdengpdprofluweibullgpdprofluweibullgpdconpscountspweibullgpdpweibullgpdconpxbqbckdenqbckdengpdqbckdengpdconqbetagpdqbetagpdconqdwmqgammagpdqgammagpdconqgbgmixqgbgmixprimeqgkgqgkgconqgngqgngconqgpdqhpdqhpdconqitmgngqitmnormgpdqitmweibullgpdqkdenqkdengpdqkdengpdconqlognormgpdqlognormgpdconqmgammaqmgammagpdqmgammagpdconqmixqmixprimeqnormgpdqnormgpdconqplotqpsdenqpsdengpdqweibullgpdqweibullgpdconrbckdenrbckdengpdrbckdengpdconrbetagpdrbetagpdconrdwmrgammagpdrgammagpdconrgkgrgkgconrgngrgngconrgpdrhpdrhpdconritmgngritmnormgpdritmweibullgpdrkdenrkdengpdrkdengpdconrlognormgpdrlognormgpdconrlplotrmgammarmgammagpdrmgammagpdconrnormgpdrnormgpdconrpsdenrpsdengpdrweibullgpdrweibullgpdcontcplottscaleplottshapeplot
Citation
To cite evmix in publications use:
Hu Y, Scarrott C (2018). “evmix: An R package for Extreme Value Mixture Modeling, Threshold Estimation and Boundary Corrected Kernel Density Estimation.” Journal of Statistical Software, 84(5), 1–27. doi:10.18637/jss.v084.i05.
Corresponding BibTeX entry:
@Article{, title = {{evmix}: An {R} package for Extreme Value Mixture Modeling, Threshold Estimation and Boundary Corrected Kernel Density Estimation}, author = {Yang Hu and Carl Scarrott}, journal = {Journal of Statistical Software}, year = {2018}, volume = {84}, number = {5}, pages = {1--27}, doi = {10.18637/jss.v084.i05}, }