Package: cauchypca 1.3

Michail Tsagris
cauchypca: Robust Principal Component Analysis Using the Cauchy Distribution
A new robust principal component analysis algorithm is implemented that relies upon the Cauchy Distribution. The algorithm is suitable for high dimensional data even if the sample size is less than the number of variables. The methodology is described in this paper: Fayomi A., Pantazis Y., Tsagris M. and Wood A.T.A. (2024). "Cauchy robust principal component analysis with applications to high-dimensional data sets". Statistics and Computing, 34: 26. <doi:10.1007/s11222-023-10328-x>.
Authors:
cauchypca_1.3.tar.gz
cauchypca_1.3.tar.gz(r-4.5-noble)cauchypca_1.3.tar.gz(r-4.4-noble)
cauchypca_1.3.tgz(r-4.4-emscripten)cauchypca_1.3.tgz(r-4.3-emscripten)
cauchypca.pdf |cauchypca.html✨
cauchypca/json (API)
# Install 'cauchypca' in R: |
install.packages('cauchypca', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 1 years agofrom:3c21227cf7. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 20 2025 |
R-4.5-linux | OK | Mar 20 2025 |
R-4.4-linux | OK | Mar 20 2025 |
Exports:cauchy.mlecauchy.pca
Dependencies:codetoolsdoParallelforeachiteratorsRcppRcppArmadilloRcppParallelRfastRfast2Rnanoflannzigg
Citation
To cite package ‘cauchypca’ in publications use:
Tsagris M (2024). cauchypca: Robust Principal Component Analysis Using the Cauchy Distribution. R package version 1.3, https://CRAN.R-project.org/package=cauchypca.
Corresponding BibTeX entry:
@Manual{, title = {cauchypca: Robust Principal Component Analysis Using the Cauchy Distribution}, author = {Michail Tsagris}, year = {2024}, note = {R package version 1.3}, url = {https://CRAN.R-project.org/package=cauchypca}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Robust Principal Component Analysis Using the Cauchy Distribution | cauchypca-package |
MLE of the Cauchy distribution | cauchy.mle |
Robust PCA using the Cauchy distribution | cauchy.pca |