Package: OTE 1.0.1

Zardad Khan

OTE: Optimal Trees Ensembles for Regression, Classification and Class Membership Probability Estimation

Functions for creating ensembles of optimal trees for regression, classification (Khan, Z., Gul, A., Perperoglou, A., Miftahuddin, M., Mahmoud, O., Adler, W., & Lausen, B. (2019). (2019) <doi:10.1007/s11634-019-00364-9>) and class membership probability estimation (Khan, Z, Gul, A, Mahmoud, O, Miftahuddin, M, Perperoglou, A, Adler, W & Lausen, B (2016) <doi:10.1007/978-3-319-25226-1_34>) are given. A few trees are selected from an initial set of trees grown by random forest for the ensemble on the basis of their individual and collective performance. Three different methods of tree selection for the case of classification are given. The prediction functions return estimates of the test responses and their class membership probabilities. Unexplained variations, error rates, confusion matrix, Brier scores, etc. are also returned for the test data.

Authors:Zardad Khan, Asma Gul, Aris Perperoglou, Osama Mahmoud, Werner Adler, Miftahuddin and Berthold Lausen

OTE_1.0.1.tar.gz
OTE_1.0.1.tar.gz(r-4.5-noble)OTE_1.0.1.tar.gz(r-4.4-noble)
OTE_1.0.1.tgz(r-4.4-emscripten)OTE_1.0.1.tgz(r-4.3-emscripten)
OTE.pdf |OTE.html
OTE/json (API)

# Install 'OTE' in R:
install.packages('OTE', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • Body - Exploring Relationships in Body Dimensions
  • Galaxy - Radial Velocity of Galaxy NGC7531

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.70 score 8 scripts 136 downloads 5 mentions 6 exports 1 dependencies

Last updated 5 years agofrom:9563536199. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 10 2024
R-4.5-linuxOKNov 10 2024

Exports:OTClassOTProbOTRegPredict.OTClassPredict.OTProbPredict.OTReg

Dependencies:randomForest