Package: seqICP 1.1

Niklas Pfister

seqICP: Sequential Invariant Causal Prediction

Contains an implementation of invariant causal prediction for sequential data. The main function in the package is 'seqICP', which performs linear sequential invariant causal prediction and has guaranteed type I error control. For non-linear dependencies the package also contains a non-linear method 'seqICPnl', which allows to input any regression procedure and performs tests based on a permutation approach that is only approximately correct. In order to test whether an individual set S is invariant the package contains the subroutines 'seqICP.s' and 'seqICPnl.s' corresponding to the respective main methods.

Authors:Niklas Pfister and Jonas Peters

seqICP_1.1.tar.gz
seqICP_1.1.tar.gz(r-4.5-noble)seqICP_1.1.tar.gz(r-4.4-noble)
seqICP_1.1.tgz(r-4.4-emscripten)seqICP_1.1.tgz(r-4.3-emscripten)
seqICP.pdf |seqICP.html
seqICP/json (API)

# Install 'seqICP' in R:
install.packages('seqICP', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 stars 478 downloads 4 exports 6 dependencies

Last updated 8 years agofrom:ab9791c1b5. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 16 2025
R-4.5-linuxOKMar 16 2025
R-4.4-linuxOKMar 16 2025

Exports:seqICPseqICP.sseqICPnlseqICPnl.s

Dependencies:dHSIClatticeMatrixmgcvnlmeRcpp