Package: seqICP 1.1

Niklas Pfister

seqICP: Sequential Invariant Causal Prediction

Contains an implementation of invariant causal prediction for sequential data. The main function in the package is 'seqICP', which performs linear sequential invariant causal prediction and has guaranteed type I error control. For non-linear dependencies the package also contains a non-linear method 'seqICPnl', which allows to input any regression procedure and performs tests based on a permutation approach that is only approximately correct. In order to test whether an individual set S is invariant the package contains the subroutines 'seqICP.s' and 'seqICPnl.s' corresponding to the respective main methods.

Authors:Niklas Pfister and Jonas Peters

seqICP_1.1.tar.gz
seqICP_1.1.tar.gz(r-4.5-noble)seqICP_1.1.tar.gz(r-4.4-noble)
seqICP_1.1.tgz(r-4.4-emscripten)seqICP_1.1.tgz(r-4.3-emscripten)
seqICP.pdf |seqICP.html
seqICP/json (API)

# Install 'seqICP' in R:
install.packages('seqICP', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.20 score 1 stars 16 scripts 447 downloads 4 exports 6 dependencies

Last updated 7 years agofrom:ab9791c1b5. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 16 2024
R-4.5-linuxOKNov 16 2024

Exports:seqICPseqICP.sseqICPnlseqICPnl.s

Dependencies:dHSIClatticeMatrixmgcvnlmeRcpp