Package: ddpca 1.1

Fan Yang

ddpca: Diagonally Dominant Principal Component Analysis

Efficient procedures for fitting the DD-PCA (Ke et al., 2019, <arxiv:1906.00051>) by decomposing a large covariance matrix into a low-rank matrix plus a diagonally dominant matrix. The implementation of DD-PCA includes the convex approach using the Alternating Direction Method of Multipliers (ADMM) and the non-convex approach using the iterative projection algorithm. Applications of DD-PCA to large covariance matrix estimation and global multiple testing are also included in this package.

Authors:Tracy Ke [aut], Lingzhou Xue [aut], Fan Yang [aut, cre]

ddpca_1.1.tar.gz
ddpca_1.1.tar.gz(r-4.5-noble)ddpca_1.1.tar.gz(r-4.4-noble)
ddpca_1.1.tgz(r-4.4-emscripten)ddpca_1.1.tgz(r-4.3-emscripten)
ddpca.pdf |ddpca.html
ddpca/json (API)

# Install 'ddpca' in R:
install.packages('ddpca', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 155 downloads 7 exports 10 dependencies

Last updated 5 years agofrom:518926e09c. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 14 2024
R-4.5-linuxOKNov 14 2024

Exports:DDHCDDPCA_convexDDPCA_nonconvexHCdetectionIHCDDProjDDProjSDD

Dependencies:latticeMASSMatrixMatrixModelsquantregRcppRcppEigenRSpectraSparseMsurvival