Package: ddpca 1.1

Fan Yang
ddpca: Diagonally Dominant Principal Component Analysis
Efficient procedures for fitting the DD-PCA (Ke et al., 2019, <arxiv:1906.00051>) by decomposing a large covariance matrix into a low-rank matrix plus a diagonally dominant matrix. The implementation of DD-PCA includes the convex approach using the Alternating Direction Method of Multipliers (ADMM) and the non-convex approach using the iterative projection algorithm. Applications of DD-PCA to large covariance matrix estimation and global multiple testing are also included in this package.
Authors:
ddpca_1.1.tar.gz
ddpca_1.1.tar.gz(r-4.5-noble)ddpca_1.1.tar.gz(r-4.4-noble)
ddpca_1.1.tgz(r-4.4-emscripten)ddpca_1.1.tgz(r-4.3-emscripten)
ddpca.pdf |ddpca.html✨
ddpca/json (API)
# Install 'ddpca' in R: |
install.packages('ddpca', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 years agofrom:518926e09c. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 14 2025 |
R-4.5-linux | OK | Mar 14 2025 |
R-4.4-linux | OK | Mar 14 2025 |
Exports:DDHCDDPCA_convexDDPCA_nonconvexHCdetectionIHCDDProjDDProjSDD
Dependencies:latticeMASSMatrixMatrixModelsquantregRcppRcppEigenRSpectraSparseMsurvival
Citation
To cite package ‘ddpca’ in publications use:
Ke T, Xue L, Yang F (2019). ddpca: Diagonally Dominant Principal Component Analysis. R package version 1.1, https://CRAN.R-project.org/package=ddpca.
Corresponding BibTeX entry:
@Manual{, title = {ddpca: Diagonally Dominant Principal Component Analysis}, author = {Tracy Ke and Lingzhou Xue and Fan Yang}, year = {2019}, note = {R package version 1.1}, url = {https://CRAN.R-project.org/package=ddpca}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Diagonally Dominant Principal Component Analysis | ddpca-package ddpca |
DD-HC test | DDHC |
Diagonally Dominant Principal Component Analysis using Convex approach | DDPCA_convex |
Diagonally Dominant Principal Component Analysis using Nonconvex approach | DDPCA_nonconvex |
Higher Criticism for detecting rare and weak signals | HCdetection |
IHC-DD test | IHCDD |
Projection onto the Diagonally Dominant Cone | ProjDD |
Projection onto the Symmetric Diagonally Dominant Cone | ProjSDD |