Package: SIBERG 2.0.3
Kevin R. Coombes
SIBERG: Systematic Identification of Bimodally Expressed Genes Using RNAseq Data
Provides models to identify bimodally expressed genes from RNAseq data based on the Bimodality Index. SIBERG models the RNAseq data in the finite mixture modeling framework and incorporates mechanisms for dealing with RNAseq normalization. Three types of mixture models are implemented, namely, the mixture of log normal, negative binomial, or generalized Poisson distribution. See Tong et al. (2013) <doi:10.1093/bioinformatics/bts713>.
Authors:
SIBERG_2.0.3.tar.gz
SIBERG_2.0.3.tar.gz(r-4.5-noble)SIBERG_2.0.3.tar.gz(r-4.4-noble)
SIBERG_2.0.3.tgz(r-4.4-emscripten)SIBERG_2.0.3.tgz(r-4.3-emscripten)
SIBERG.pdf |SIBERG.html✨
SIBERG/json (API)
NEWS
# Install 'SIBERG' in R: |
install.packages('SIBERG', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://r-forge.r-project.org/projects/oompa
Last updated 3 years agofrom:e9af1c4eda. Checks:2 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Nov 20 2024 |
R-4.5-linux | OK | Nov 20 2024 |
Exports:fitGPfitLNfitNBfitNLSIBER
Dependencies:mclust
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Fit Generalized Poisson Mixture Model | fitGP |
Fit Log Normal Mixture Model | fitLN |
Fit Negative Binomial Mixture Model | fitNB |
Fit Negative Binomial Mixture Model | fitNL |
Fit Mixture Model on The RNAseq Data and Calculates Bimodality Index | SIBER |
Simulated Data From 2-component Mixture Models | dataList parList simDat |