Package: SIBERG 2.0.3

Kevin R. Coombes

SIBERG: Systematic Identification of Bimodally Expressed Genes Using RNAseq Data

Provides models to identify bimodally expressed genes from RNAseq data based on the Bimodality Index. SIBERG models the RNAseq data in the finite mixture modeling framework and incorporates mechanisms for dealing with RNAseq normalization. Three types of mixture models are implemented, namely, the mixture of log normal, negative binomial, or generalized Poisson distribution. See Tong et al. (2013) <doi:10.1093/bioinformatics/bts713>.

Authors:Pan Tong, Kevin R. Coombes

SIBERG_2.0.3.tar.gz
SIBERG_2.0.3.tar.gz(r-4.5-noble)SIBERG_2.0.3.tar.gz(r-4.4-noble)
SIBERG_2.0.3.tgz(r-4.4-emscripten)SIBERG_2.0.3.tgz(r-4.3-emscripten)
SIBERG.pdf |SIBERG.html
SIBERG/json (API)
NEWS

# Install 'SIBERG' in R:
install.packages('SIBERG', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://r-forge.r-project.org/projects/oompa

Datasets:
  • dataList - Simulated Data From 2-component Mixture Models
  • parList - Simulated Data From 2-component Mixture Models

2.20 score 16 scripts 168 downloads 5 exports 1 dependencies

Last updated 3 years agofrom:e9af1c4eda. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 20 2024
R-4.5-linuxOKNov 20 2024

Exports:fitGPfitLNfitNBfitNLSIBER

Dependencies:mclust

SIBER Vignette

Rendered fromSIBER.Rnwusingutils::Sweaveon Nov 20 2024.

Last update: 2018-05-18
Started: 2017-07-11