Package: trinROC 0.7

Reinhard Furrer

trinROC: Statistical Tests for Assessing Trinormal ROC Data

Several statistical test functions as well as a function for exploratory data analysis to investigate classifiers allocating individuals to one of three disjoint and ordered classes. In a single classifier assessment the discriminatory power is compared to classification by chance. In a comparison of two classifiers the null hypothesis corresponds to equal discriminatory power of the two classifiers. See also "ROC Analysis for Classification and Prediction in Practice" by Nakas, Bantis and Gatsonis (2023), ISBN 9781482233704.

Authors:Samuel Noll [aut], Reinhard Furrer [aut, cre], Benjamin Reiser [ctb], Christos T. Nakas [ctb], Annina Cincera [aut]

trinROC_0.7.tar.gz
trinROC_0.7.tar.gz(r-4.5-noble)trinROC_0.7.tar.gz(r-4.4-noble)
trinROC_0.7.tgz(r-4.4-emscripten)trinROC_0.7.tgz(r-4.3-emscripten)
trinROC.pdf |trinROC.html
trinROC/json (API)
NEWS

# Install 'trinROC' in R:
install.packages('trinROC', repos = 'https://cloud.r-project.org')

Pkgdown site:https://www.math.uzh.ch

Datasets:
  • cancer - Synthetic data set to investigate three-class ROC data.
  • krebs - Synthetic small data set to investigate three-class ROC data.

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.70 score 256 downloads 10 exports 52 dependencies

Last updated 6 months agofrom:da71b33879. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 04 2025
R-4.5-linuxOKMar 04 2025
R-4.4-linuxOKMar 04 2025

Exports:boot.testboxcoxROCemp.vusfindmuroc.edaroc3.testrocsurf.emprocsurf.trintrinROC.testtrinVUS.test

Dependencies:base64encbslibcachemclicolorspacedigestevaluatefansifarverfastmapfontawesomefsggplot2gluegridExtragtablehighrhtmltoolshtmlwidgetsisobandjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmemoisemgcvmimemunsellnlmepillarpkgconfigR6rappdirsRColorBrewerrglrlangrmarkdownsassscalestibbletinytexutf8vctrsviridisLitewithrxfunyaml

Overview of the Package trinROC

Rendered fromtrinROC_vignette.Rmdusingknitr::rmarkdownon Mar 04 2025.

Last update: 2022-10-27
Started: 2018-09-03

Citation

Noll, S., Furrer, R., Reiser, B., and Nakas C. T. (2019). Inference in ROC surface analysis via a trinormal model-based testing approach. Stat, 8(1), e249.

Corresponding BibTeX entry:

  @Article{,
    title = {Inference in receiver operating characteristic surface
      analysis via a trinormal model-based testing approach},
    author = {Samuel Noll and Reinhard Furrer and Benjamin Reiser and
      Christos T. Nakas},
    journal = {Stat},
    year = {2019},
    volume = {8},
    number = {1},
    pages = {e249},
    doi = {10.1002/sta4.249},
  }

Readme and manuals

trinROC

This package helps to assess three-class Receiver Operating Characteristic (ROC) type data. It provides several statistical test functions as well as a function for exploratory data analysis to investigate classifiers allocating individuals to one of three disjoint and ordered classes. In a single classifier assessment the discriminatory power is compared to classification by chance. In a comparison of two classifiers the null hypothesis corresponds to equal discriminatory power of the two classifiers.
See also "ROC Analysis for Classification and Prediction in Practice" by Nakas, Bantis and Gatsonis (2023), ISBN 9781482233704.

CRAN status Downloads Downloads