Package: drcarlate 1.2.0
Mingxin Zhang
drcarlate: Improving Estimation Efficiency in CAR with Imperfect Compliance
We provide a list of functions for replicating the results of the Monte Carlo simulations and empirical application of Jiang et al. (2022). In particular, we provide corresponding functions for generating the three types of random data described in this paper, as well as all the estimation strategies. Detailed information about the data generation process and estimation strategy can be found in Jiang et al. (2022) <doi:10.48550/arXiv.2201.13004>.
Authors:
drcarlate_1.2.0.tar.gz
drcarlate_1.2.0.tar.gz(r-4.5-noble)drcarlate_1.2.0.tar.gz(r-4.4-noble)
drcarlate_1.2.0.tgz(r-4.4-emscripten)drcarlate_1.2.0.tgz(r-4.3-emscripten)
drcarlate.pdf |drcarlate.html✨
drcarlate/json (API)
NEWS
# Install 'drcarlate' in R: |
install.packages('drcarlate', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
- data_table - Data used to reproduce Table 5 results in Jiang et. al.
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 2 years agofrom:c429da0a40. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Dec 07 2024 |
R-4.5-linux | OK | Dec 07 2024 |
Exports:ATEDGPATEJLTZATEOutputATETrueValueCovAdptRndfeasiblePostLassoMatToolFuncDGPJLTZLinearLogitLogisticRegnorminvOutputpihatsplinebasisstanEtauTrueValue
Dependencies:clicodetoolsforeachglmnetglueiteratorslatticelifecyclemagrittrMASSMatrixpracmapurrrRcppRcppEigenrlangshapesplus2Rstringistringrsurvivalvctrs