Package: SSGL 2.0

Ray Bai
SSGL: Spike-and-Slab Group Lasso for Group-Regularized Generalized Linear Models
Fits group-regularized generalized linear models (GLMs) using the spike-and-slab group lasso (SSGL) prior of Bai et al. (2022) <doi:10.1080/01621459.2020.1765784> and extended to GLMs by Bai (2023) <doi:10.48550/arXiv.2007.07021>. This package supports fitting the SSGL model for the following GLMs with group sparsity: Gaussian linear regression, binary logistic regression, and Poisson regression.
Authors:
SSGL_2.0.tar.gz
SSGL_2.0.tar.gz(r-4.5-noble)SSGL_2.0.tar.gz(r-4.4-noble)
SSGL_2.0.tgz(r-4.4-emscripten)SSGL_2.0.tgz(r-4.3-emscripten)
SSGL.pdf |SSGL.html✨
SSGL/json (API)
# Install 'SSGL' in R: |
install.packages('SSGL', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 hours agofrom:2bdabe0fa4. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 24 2025 |
R-4.5-linux | OK | Mar 24 2025 |
R-4.4-linux | OK | Mar 24 2025 |
Exports:SSGLSSGL_cvSSGL_gibbs
Dependencies:BayesLogitcaretclasscliclockcodetoolscolorspacecpp11data.tablediagramdigestdoParalleldoRNGdplyre1071fansifarverforeachfuturefuture.applygenericsggplot2GIGrvgglobalsgluegowergrpreggtablehardhatipredisobanditeratorsKernSmoothlabelinglatticelavalifecyclelistenvlubridatemagrittrMASSMatrixmgcvModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpROCprodlimprogressrproxypurrrR6RColorBrewerRcpprecipesreshape2rlangrngtoolsrpartscalesshapesparsevctrsSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetzdbutf8vctrsviridisLitewithr