Package: RcppDPR 0.1.9

Mohammad Abu Gazala

RcppDPR: 'Rcpp' Implementation of Dirichlet Process Regression

'Rcpp' reimplementation of the the Bayesian non-parametric Dirichlet Process Regression model for penalized regression first published in Zeng and Zhou (2017) <doi:10.1038/s41467-017-00470-2>. A full Bayesian version is implemented with Gibbs sampling, as well as a faster but less accurate variational Bayes approximation.

Authors:Mohammad Abu Gazala [cre, aut], Daniel Nachun [ctb], Ping Zeng [ctb]

RcppDPR_0.1.9.tar.gz
RcppDPR_0.1.9.tar.gz(r-4.5-noble)RcppDPR_0.1.9.tar.gz(r-4.4-noble)
RcppDPR_0.1.9.tgz(r-4.4-emscripten)RcppDPR_0.1.9.tgz(r-4.3-emscripten)
RcppDPR.pdf |RcppDPR.html
RcppDPR/json (API)
NEWS

# Install 'RcppDPR' in R:
install.packages('RcppDPR', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Uses libs:
  • openblas– Optimized BLAS
  • gsl– GNU Scientific Library (GSL)
  • c++– GNU Standard C++ Library v3

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openblasgslcpp

1.00 score 1 exports 3 dependencies

Last updated 4 hours agofrom:bf50405c3f. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 15 2025
R-4.5-linux-x86_64OKMar 15 2025
R-4.4-linux-x86_64OKMar 15 2025

Exports:fit_model

Dependencies:RcppRcppArmadilloRcppGSL