Package: smidm 1.0

Sonja Jäckle

smidm: Statistical Modelling for Infectious Disease Management

Statistical models for specific coronavirus disease 2019 use cases at German local health authorities. All models of Statistical modelling for infectious disease management 'smidm' are part of the decision support toolkit in the 'EsteR' project. More information is published in Sonja Jäckle, Rieke Alpers, Lisa Kühne, Jakob Schumacher, Benjamin Geisler, Max Westphal "'EsteR' – A Digital Toolkit for COVID-19 Decision Support in Local Health Authorities" (2022) <doi:10.3233/SHTI220799> and Sonja Jäckle, Elias Röger, Volker Dicken, Benjamin Geisler, Jakob Schumacher, Max Westphal "A Statistical Model to Assess Risk for Supporting COVID-19 Quarantine Decisions" (2021) <doi:10.3390/ijerph18179166>.

Authors:Max Westphal [aut], Stefanie Grimm [aut], Sonja Jäckle [aut, cre], Rieke Alpers [aut], Hong Phuc Truong [aut], Amelie Lucker [ctb], Fraunhofer MEVIS [cph], Fraunhofer ITWM [cph]

smidm_1.0.tar.gz
smidm_1.0.tar.gz(r-4.5-noble)smidm_1.0.tar.gz(r-4.4-noble)
smidm_1.0.tgz(r-4.4-emscripten)smidm_1.0.tgz(r-4.3-emscripten)
smidm.pdf |smidm.html
smidm/json (API)

# Install 'smidm' in R:
install.packages('smidm', repos = 'https://cloud.r-project.org')

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

3.40 score 713 downloads 11 exports 18 dependencies

Last updated 3 years agofrom:55c28e6f41. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-linuxOKMar 06 2025
R-4.4-linuxOKMar 06 2025

Exports:calculate_likelihood_negative_testscalculate_posterior_no_infectionscalculate_prior_infectionsget_expected_total_infectionsget_incubation_day_distributionget_infection_densityget_infectiousness_densityget_misc_infection_densityget_serial_interval_densityget_test_sensitivitiespredict_future_infections

Dependencies:clidplyrextraDistrfansigenericsgluelifecyclemagrittrpillarpkgconfigR6Rcpprlangtibbletidyselectutf8vctrswithr

Statistical Modelling for Infectious Disease Management - Contacts

Rendered fromcontacts.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2022-08-27
Started: 2022-08-27

Statistical Modelling for Infectious Disease Management - Contagious period

Rendered fromcontagious_period.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2022-08-27
Started: 2022-08-27

Statistical Modelling for Infectious Disease Management - Infection period

Rendered frominfection_period.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2022-08-27
Started: 2022-08-27

Statistical Modelling for Infectious Disease Management - Prediction of future infections in a group

Rendered fromfuture_infections.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2022-08-27
Started: 2022-08-27

Statistical Modelling for Infectious Disease Management - Risk assessment group quarantine

Rendered fromrisk_assessment_group_quarantine.Rmdusingknitr::rmarkdownon Mar 06 2025.

Last update: 2022-08-27
Started: 2022-08-27

Citation

To cite package ‘smidm’ in publications use:

Westphal M, Grimm S, Jäckle S, Alpers R, Truong HP (2022). smidm: Statistical Modelling for Infectious Disease Management. R package version 1.0, https://CRAN.R-project.org/package=smidm.

Corresponding BibTeX entry:

  @Manual{,
    title = {smidm: Statistical Modelling for Infectious Disease
      Management},
    author = {Max Westphal and Stefanie Grimm and Sonja Jäckle and
      Rieke Alpers and Hong Phuc Truong},
    year = {2022},
    note = {R package version 1.0},
    url = {https://CRAN.R-project.org/package=smidm},
  }

Readme and manuals

Smidm - Statistical Modelling for Infectious Disease Management

Overview

Smidm implements statistical models and visualizations to support decision making by health authorities w.r.t. the COVID-19 pandemic. The application can be viewed here.

Installation

This package can be installed for developers with access to this repository with this command:

install.packages(c("devtools", "rmarkdown"))
devtools::install_git(
  "https://gitlab.cc-asp.fraunhofer.de/ester/smidm.git",
  ref = "main",
  build_vignettes = TRUE
  )

The ref argument can be used to specify which version/branch should be installed.

Getting started

Several vignettes have been compiled to illustrate the functionality of the package. An overview can be displayed via:

vignette(package = "smidm")

To display an individual vignette, e.g. for the prediction when contacts of an infected person will start to show symptoms, utilize the following command:

vignette(topic = "contacts", package = "smidm")

Conventions

As style guide for this project the tidyverse style guide is used.

Version numbers of the package are given by the Semantic Versioning.

The default branch is main. For adding new features, you need to create a new branch. On the main branch is no pushing, only merging.

Development and research

The research project was funded from 15.05.2020 - 14.12.2020 within the Fraunhofer Anti-Corona Program and from 01.07.2021 - 30.06.2022 within the program Prevention and Care of Epidemic Infections with Innovative Medical Technology by the Federal Ministry of Education and Research.

In addition to the R-package a web application was built, which is available at https://ester.fraunhofer.de/.

Authors and contact

The project was developed by Fraunhofer Institute for Industrial Mathematics ITWM, Fraunhofer Institute for Digital Medicine MEVIS and Leibniz Institute for Prevention Research and Epidemiology BIPS in cooperation with the health authority Berlin-Reinickendorf.

If you have any questions, feedback, issues/PR, you can contact us via ester-info@itwm.fraunhofer.de.

For further contact information, please visit the website https://www.itwm.fraunhofer.de/en/departments/fm/data-science.html.

License

Licensed under the BSD 3-Clause License.

Help Manual

Help pageTopics
Overall likelihoodcalculate_likelihood_negative_tests
Likelihood Kcalculate_likelihood_negative_tests_k
Negative analysis probabilitycalculate_posterior_no_infections
A priori probability of further Infectionscalculate_prior_infections
Generate data extendedgenerate_data_extended
Expected number of total symptomatic infectionsget_expected_total_infections
Vector of day-specific probabilities of disease outbreakget_incubation_day_distribution
Dataframe with dates and probability of infectionget_infection_density
Dataframe with dates and infectiousness probabilityget_infectiousness_density
Dataframe with dates and probability of infectionget_misc_infection_density
Dataframe with dates and contact symptom begin probabilityget_serial_interval_density
Generate infoget_test_sensitivities
One more primary a priori probabilityp_onePrimaryMore
Prediction of future infections per daypredict_future_infections