Package: OPL 1.0.0

Federico Brogi
OPL: Optimal Policy Learning
Provides functions for optimal policy learning in socioeconomic applications helping users to learn the most effective policies based on data in order to maximize empirical welfare. Specifically, 'OPL' allows to find "treatment assignment rules" that maximize the overall welfare, defined as the sum of the policy effects estimated over all the policy beneficiaries. Documentation about 'OPL' is provided by several international articles via Athey et al (2021, <doi:10.3982/ECTA15732>), Kitagawa et al (2018, <doi:10.3982/ECTA13288>), Cerulli (2022, <doi:10.1080/13504851.2022.2032577>), the paper by Cerulli (201, <doi:10.1080/13504851.2020.1820939>) and the book by Gareth et al (2013, <doi:10.1007/978-1-4614-7138-7>).
Authors:
OPL_1.0.0.tar.gz
OPL_1.0.0.tar.gz(r-4.5-noble)OPL_1.0.0.tar.gz(r-4.4-noble)
OPL_1.0.0.tgz(r-4.4-emscripten)OPL_1.0.0.tgz(r-4.3-emscripten)
OPL.pdf |OPL.html✨
OPL/json (API)
# Install 'OPL' in R: |
install.packages('OPL', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 12 days agofrom:3fea288c32. Checks:2 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Feb 03 2025 |
R-4.5-linux | OK | Feb 03 2025 |
Exports:make_cateopl_dt_copl_dt_max_choiceopl_lc_copl_tb_coverlapping
Dependencies:clicolorspacecpp11digestdplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepanderpillarpkgconfigpurrrR6randomForestRColorBrewerRcpprlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr
make_cate
Rendered frommake_cate.Rmd
usingknitr::rmarkdown
on Feb 03 2025.Last update: 2025-02-03
Started: 2025-02-03
opl_dt_c
Rendered fromopl_dt_c.Rmd
usingknitr::rmarkdown
on Feb 03 2025.Last update: 2025-02-03
Started: 2025-02-03
opl_lc_c
Rendered fromopl_lc_c.Rmd
usingknitr::rmarkdown
on Feb 03 2025.Last update: 2025-02-03
Started: 2025-02-03
opl_tb_c
Rendered fromopl_tb_c.Rmd
usingknitr::rmarkdown
on Feb 03 2025.Last update: 2025-02-03
Started: 2025-02-03
overlapping
Rendered fromoverlapping.Rmd
usingknitr::rmarkdown
on Feb 03 2025.Last update: 2025-02-03
Started: 2025-02-03
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Function to calculate the Causal Treatment Effect | make_cate |
Optimal Policy Learning with Decision Tree | opl_dt_c |
User selection on multiple choice | opl_dt_max_choice |
Linear Combination Based Policy Learning | opl_lc_c |
Threshold-based policy learning at specific values | opl_tb_c |
Testing overlap between old and new policy sample | overlapping |