Package: clespr 1.1.2

Ting Fung (Ralph) Ma

clespr: Composite Likelihood Estimation for Spatial Data

Composite likelihood approach is implemented to estimating statistical models for spatial ordinal and proportional data based on Feng et al. (2014) <doi:10.1002/env.2306>. Parameter estimates are identified by maximizing composite log-likelihood functions using the limited memory BFGS optimization algorithm with bounding constraints, while standard errors are obtained by estimating the Godambe information matrix.

Authors:Ting Fung Ma [cre, aut], Wenbo Wu [aut], Jun Zhu [aut], Xiaoping Feng [aut], Daniel Walsh [ctb], Robin Russell [ctb]

clespr_1.1.2.tar.gz
clespr_1.1.2.tar.gz(r-4.5-noble)clespr_1.1.2.tar.gz(r-4.4-noble)
clespr_1.1.2.tgz(r-4.4-emscripten)clespr_1.1.2.tgz(r-4.3-emscripten)
clespr.pdf |clespr.html
clespr/json (API)

# Install 'clespr' in R:
install.packages('clespr', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 6 scripts 163 downloads 7 exports 73 dependencies

Last updated 7 years agofrom:4f977bfa77. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-linuxOKNov 07 2024

Exports:func.cl.ordfunc.cl.ord.reparfunc.cl.propfunc.cle.ordfunc.cle.propfunc.obs.ordfunc.obs.prop

Dependencies:abindAERbackportsbootbroomcarcarDatacliclordrcodetoolscolorspacecowplotcpp11DerivdoBydoParalleldplyrfansifarverforeachFormulagenericsggplot2gluegtableisobanditeratorslabelinglatticelifecyclelme4lmtestmagicmagrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbivnormpbkrtestpillarpkgconfigpurrrquantregR6RColorBrewerRcppRcppEigenrlangrootSolvesandwichscalesSparseMstringistringrsurvivaltibbletidyrtidyselecttmvmixnormutf8vctrsviridisLitewithrzoo