Package: neuromplex 1.0-1
Surya Tokdar
neuromplex: Neural Multiplexing Analysis
Statistical methods for whole-trial and time-domain analysis of single cell neural response to multiple stimuli presented simultaneously. The package is based on the paper by C Glynn, ST Tokdar, A Zaman, VC Caruso, JT Mohl, SM Willett, and JM Groh (2021) "Analyzing second order stochasticity of neural spiking under stimuli-bundle exposure", is in press for publication by the Annals of Applied Statistics. A preprint may be found at <arxiv:1911.04387>.
Authors:
neuromplex_1.0-1.tar.gz
neuromplex_1.0-1.tar.gz(r-4.5-noble)neuromplex_1.0-1.tar.gz(r-4.4-noble)
neuromplex_1.0-1.tgz(r-4.4-emscripten)neuromplex_1.0-1.tgz(r-4.3-emscripten)
neuromplex.pdf |neuromplex.html✨
neuromplex/json (API)
# Install 'neuromplex' in R: |
install.packages('neuromplex', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:2ca7b60b33. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-linux | OK | Nov 04 2024 |
Exports:bin.counterdappdapp.simulatemplex.preprocesspoisson.testssynthesis.dapp
Dependencies:BayesLogitclicolorspacecpp11dplyrfansifarvergenericsggplot2gluegridExtragtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Bin Counting | bin.counter |
Dynamic Admixture of Poisson Process | dapp |
Simulate from Dynamic Admixture of Poisson Process | dapp.simulate |
Preprocessing Neural Multiplexing Data | mplex.preprocess |
Plotting Method for Dynamic Admixture of Poisson Process | plot.dapp |
Poisson Tests for Whole Trial Spike Counts | poisson.tests |
Predict Method for Dynamic Admixture of Poisson Process | predict.dapp |
Summary Method for Dynamic Admixture of Poisson Process | summary.dapp |
Simulate Multiplexing Data for DAPP Analysis | synthesis.dapp |