Package: SmoothTensor 0.1.1

Chanwoo Lee
SmoothTensor: A Collection of Smooth Tensor Estimation Methods
A list of methods for estimating a smooth tensor with an unknown permutation. It also contains several multi-variate functions for generating permuted signal tensors and corresponding observed tensors. For a detailed introduction for the model and estimation techniques, see the paper by Chanwoo Lee and Miaoyan Wang (2021) "Smooth tensor estimation with unknown permutations" <arxiv:2111.04681>.
Authors:
SmoothTensor_0.1.1.tar.gz
SmoothTensor_0.1.1.tar.gz(r-4.5-noble)SmoothTensor_0.1.1.tar.gz(r-4.4-noble)
SmoothTensor_0.1.1.tgz(r-4.4-emscripten)SmoothTensor_0.1.1.tgz(r-4.3-emscripten)
SmoothTensor.pdf |SmoothTensor.html✨
SmoothTensor/json (API)
# Install 'SmoothTensor' in R: |
install.packages('SmoothTensor', repos = 'https://cloud.r-project.org') |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 3 years agofrom:7288c51196. Checks:1 OK, 2 NOTE. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Mar 11 2025 |
R-4.5-linux | NOTE | Mar 11 2025 |
R-4.4-linux | NOTE | Mar 11 2025 |
Exports:Borda_countLSEsimulationsimulation_asymsimulation_binSpectral
Citation
To cite package ‘SmoothTensor’ in publications use:
Lee C, Wang M (2021). SmoothTensor: A Collection of Smooth Tensor Estimation Methods. R package version 0.1.1, https://CRAN.R-project.org/package=SmoothTensor.
Corresponding BibTeX entry:
@Manual{, title = {SmoothTensor: A Collection of Smooth Tensor Estimation Methods}, author = {Chanwoo Lee and Miaoyan Wang}, year = {2021}, note = {R package version 0.1.1}, url = {https://CRAN.R-project.org/package=SmoothTensor}, }
Readme and manuals
SmoothTensor
Efficient algorithms for smooth tensor estimation with unknown permutation. This package includes the least square estimation, spectral, and Borda count methods.