Package: FPDclustering 2.3.1

Cristina Tortora

FPDclustering: PD-Clustering and Related Methods

Probabilistic distance clustering (PD-clustering) is an iterative, distribution free, probabilistic clustering method. PD-clustering assigns units to a cluster according to their probability of membership, under the constraint that the product of the probability and the distance of each point to any cluster centre is a constant. PD-clustering is a flexible method that can be used with non-spherical clusters, outliers, or noisy data. PDQ is an extension of the algorithm for clusters of different size. GPDC and TPDC uses a dissimilarity measure based on densities. Factor PD-clustering (FPDC) is a factor clustering method that involves a linear transformation of variables and a cluster optimizing the PD-clustering criterion. It works on high dimensional data sets.

Authors:Cristina Tortora [aut, cre, cph], Noe Vidales [aut], Francesco Palumbo [aut], Tina Kalra [aut], and Paul D. McNicholas [fnd]

FPDclustering_2.3.1.tar.gz
FPDclustering_2.3.1.tar.gz(r-4.5-noble)FPDclustering_2.3.1.tar.gz(r-4.4-noble)
FPDclustering_2.3.1.tgz(r-4.4-emscripten)FPDclustering_2.3.1.tgz(r-4.3-emscripten)
FPDclustering.pdf |FPDclustering.html
FPDclustering/json (API)

# Install 'FPDclustering' in R:
install.packages('FPDclustering', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.41 score 13 scripts 373 downloads 7 exports 100 dependencies

Last updated 10 months agofrom:8e867dfb5b. Checks:OK: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 26 2024
R-4.5-linuxOKOct 26 2024

Exports:FPDCGPDCPDCPDQSilhTPDCTuckerFactors

Dependencies:base64encbitbit64bslibcachemclassclassIntclicliprclustercolorspacecombinatcommonmarkcpp11crayondigestdplyre1071ExPositionfansifarverfastmapfontawesomeforcatsfsgenericsGGallyggeasyggplot2ggstatsgluegtablehavenhighrhmshtmltoolshttpuvisobandjquerylibjsonliteKernSmoothklaRlabelinglabelledlaterlatticelifecyclemagrittrMASSMatrixmemoisemgcvmimeminiUImunsellmvtnormnlmepatchworkpillarpkgconfigplyrprettyGraphsprettyunitsprogresspromisesproxypurrrquestionrR.cacheR.methodsS3R.ooR.utilsR6rappdirsRColorBrewerRcppreadrrlangrootSolverprojrootrstudioapisassscalesshinysourcetoolsstringistringrstylerThreeWaytibbletidyrtidyselecttzdbutf8vctrsviridisLitevroomwithrxfunxtable