Package: BioM2 1.1.1

Shunjie Zhang

BioM2: Biologically Explainable Machine Learning Framework

Biologically Explainable Machine Learning Framework for Phenotype Prediction using omics data described in Chen and Schwarz (2017) <doi:10.48550/arXiv.1712.00336>.Identifying reproducible and interpretable biological patterns from high-dimensional omics data is a critical factor in understanding the risk mechanism of complex disease. As such, explainable machine learning can offer biological insight in addition to personalized risk scoring.In this process, a feature space of biological pathways will be generated, and the feature space can also be subsequently analyzed using WGCNA (Described in Horvath and Zhang (2005) <doi:10.2202/1544-6115.1128> and Langfelder and Horvath (2008) <doi:10.1186/1471-2105-9-559> ) methods.

Authors:Shunjie Zhang [aut, cre], Junfang Chen [aut]

BioM2_1.1.1.tar.gz
BioM2_1.1.1.tar.gz(r-4.5-noble)BioM2_1.1.1.tar.gz(r-4.4-noble)
BioM2_1.1.1.tgz(r-4.4-emscripten)BioM2_1.1.1.tgz(r-4.3-emscripten)
BioM2.pdf |BioM2.html
BioM2/json (API)
NEWS

# Install 'BioM2' in R:
install.packages('BioM2', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.65 score 9 scripts 429 downloads 14 exports 272 dependencies

Last updated 1 days agofrom:2136c5df1c. Checks:2 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKFeb 19 2025
R-4.5-linuxOKFeb 19 2025

Exports:AddUnmappedbaseModelBioM2FindParaModuleHyBioM2PathwaysModulePlotCorModulePlotPathFearturePlotPathInnerPlotPathNetShowModuleStage1_FeartureSelectionStage2_FeartureSelectionVisMultiModule

Dependencies:abindafexAnnotationDbiaskpassbackportsbase64encBayesFactorbayestestRbbotkBHBiobaseBiocGenericsBiostringsbitbit64bitopsblobbootbroombslibBWStestcachemcallrcarcarDatacaretcaToolscheckmateclasscliclockclueclusterCMplotcodacodetoolscolorspacecontfraccorrelationcorrplotcowplotcpp11crayoncurldata.tabledatawizardDBIDEoptimRDerivdescdeSolvediagramdigestdiptestdoBydoParalleldplyrdqrngdynamicTreeCute1071effectsizeellipticevaluatefansifarverfastclusterfastmapflexmixFNNfontawesomeforeachforeignFormulafpcfsfuturefuture.applygenericsGenomeInfoDbGenomeInfoDbDataggcorrplotggforceggnetworkggplot2ggpubrggrepelggsciggsideggsignifggstatsplotggthemesglobalsgluegmpGO.dbgowergplotsgridExtragtablegtoolshardhathighrHmischtmlTablehtmltoolshtmlwidgetshttrhypergeoigraphimputeinsightipredIRangesirlbaisobanditeratorsjiebaRjiebaRDjquerylibjsonliteKEGGRESTkernlabKernSmoothknitrkSampleslabelinglatticelavalgrlifecyclelistenvlme4lmerTestlubridatemagrittrMASSMatrixMatrixModelsmatrixStatsmclustmemoisemgcvmicrobenchmarkmimeminqamlbenchmlr3mlr3clustermlr3datamlr3filtersmlr3fselectmlr3hyperbandmlr3inferrmlr3learnersmlr3mbomlr3measuresmlr3miscmlr3pipelinesmlr3tuningmlr3tuningspacesmlr3versemlr3vizModelMetricsmodelrmodeltoolsmultcompViewmunsellmvtnormnetworknlmenloptrnnetnumDerivopensslpaletteerpalmerpenguinsparadoxparallellyparameterspatchworkpbapplypbkrtestperformancepillarpkgconfigplogrplyrPMCMRpluspngpolyclippolynomprabcluspreprocessCoreprismaticpROCprocessxprodlimprogressrproxyPRROCpspurrrquantregR6rappdirsrbibutilsRColorBrewerRcppRcppAnnoyRcppEigenRcppParallelRcppProgressRdpackrecipesreformulasrematch2reshapereshape2rlangrmarkdownRmpfrrobustbaseROCRrpartRSpectraRSQLiterstantoolsrstatixrstudioapiS4VectorssassscalesshapesitmosnaspacefillrSparseMsparsevctrsSQUAREMstabmstatnet.commonstatsExpressionsstringistringrSuppDistssurvivalsyssystemfontstibbletidyrtidyselecttimechangetimeDatetinytextweenrtzdbUCSC.utilsutf8uuiduwotvctrsviridisviridisLitewebshotWGCNAwithrwordcloud2WRS2xfunXVectoryamlzeallot