Package: clusterSEs 2.6.5

Justin Esarey
clusterSEs: Calculate Cluster-Robust p-Values and Confidence Intervals
Calculate p-values and confidence intervals using cluster-adjusted t-statistics (based on Ibragimov and Muller (2010) <doi:10.1198/jbes.2009.08046>, pairs cluster bootstrapped t-statistics, and wild cluster bootstrapped t-statistics (the latter two techniques based on Cameron, Gelbach, and Miller (2008) <doi:10.1162/rest.90.3.414>. Procedures are included for use with GLM, ivreg, plm (pooling or fixed effects), and mlogit models.
Authors:
clusterSEs_2.6.5.tar.gz
clusterSEs_2.6.5.tar.gz(r-4.5-noble)clusterSEs_2.6.5.tar.gz(r-4.4-noble)
clusterSEs_2.6.5.tgz(r-4.4-emscripten)clusterSEs_2.6.5.tgz(r-4.3-emscripten)
clusterSEs.pdf |clusterSEs.html✨
clusterSEs/json (API)
# Install 'clusterSEs' in R: |
install.packages('clusterSEs', repos = 'https://cloud.r-project.org') |
Conda:r-clusterses-2.6.5(2025-03-25)
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 4 years agofrom:f3ddfcd5e4. Checks:3 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Apr 02 2025 |
R-4.5-linux | OK | Apr 02 2025 |
R-4.4-linux | OK | Apr 02 2025 |
Exports:cluster.bs.glmcluster.bs.ivregcluster.bs.mlogitcluster.bs.plmcluster.im.glmcluster.im.ivregcluster.im.mlogitcluster.wild.glmcluster.wild.ivregcluster.wild.plm
Dependencies:abindAERbackportsbdsmatrixbootbroomcarcarDataclicollapsecolorspacecowplotcpp11DerivdfidxdigestdoBydplyrfansifarverFormulagenericsggplot2gluegtableisobandlabelinglatticelifecyclelme4lmtestmagrittrMASSMatrixMatrixModelsmaxLikmgcvmicrobenchmarkminqamiscToolsmlogitmodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplmpurrrquantregR6rbibutilsRColorBrewerRcppRcppEigenRdpackreformulasrlangsandwichscalesSparseMstatmodstringistringrsurvivaltibbletidyrtidyselectutf8vctrsviridisLitewithrzoo
Citation
To cite clusterSEs in publications use:
Justin Esarey and Andrew Menger (2017). Practical and Effective Approaches to Dealing with Clustered Data. Political Science Research and Methods, forthcoming, 1-35. URL: http://jee3.web.rice.edu/cluster-paper.pdf.
Corresponding BibTeX entry:
@Article{, title = {Practical and Effective Approaches to Dealing with Clustered Data}, author = {Justin Esarey and Andrew Menger}, journal = {Political Science Research and Methods}, year = {2017}, volume = {forthcoming}, pages = {1--35}, url = {http://jee3.web.rice.edu/cluster-paper.pdf}, }
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Pairs Cluster Bootstrapped p-Values For GLM | cluster.bs.glm |
Pairs Cluster Bootstrapped p-Values For Regression With Instrumental Variables | cluster.bs.ivreg |
Pairs Cluster Bootstrapped p-Values For mlogit | cluster.bs.mlogit |
Pairs Cluster Bootstrapped p-Values For PLM | cluster.bs.plm |
Cluster-Adjusted Confidence Intervals And p-Values For GLM | cluster.im.glm |
Cluster-Adjusted Confidence Intervals And p-Values For GLM | cluster.im.ivreg |
Cluster-Adjusted Confidence Intervals And p-Values For mlogit | cluster.im.mlogit |
Wild Cluster Bootstrapped p-Values For Linear Family GLM | cluster.wild.glm |
Wild Cluster Bootstrapped p-Values For For Regression With Instrumental Variables | cluster.wild.ivreg |
Wild Cluster Bootstrapped p-Values For PLM | cluster.wild.plm |