Package: EESPCA 0.7.0

H. Robert Frost

EESPCA: Eigenvectors from Eigenvalues Sparse Principal Component Analysis (EESPCA)

Contains logic for computing sparse principal components via the EESPCA method, which is based on an approximation of the eigenvector/eigenvalue identity. Includes logic to support execution of the TPower and rifle sparse PCA methods, as well as logic to estimate the sparsity parameters used by EESPCA, TPower and rifle via cross-validation to minimize the out-of-sample reconstruction error. H. Robert Frost (2021) <doi:10.1080/10618600.2021.1987254>.

Authors:H. Robert Frost

EESPCA_0.7.0.tar.gz
EESPCA_0.7.0.tar.gz(r-4.5-noble)EESPCA_0.7.0.tar.gz(r-4.4-noble)
EESPCA_0.7.0.tgz(r-4.4-emscripten)EESPCA_0.7.0.tgz(r-4.3-emscripten)
EESPCA.pdf |EESPCA.html
EESPCA/json (API)

# Install 'EESPCA' in R:
install.packages('EESPCA', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.00 score 1 stars 2 scripts 223 downloads 12 exports 3 dependencies

Last updated 2 years agofrom:bec773c6aa. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-linuxNOTENov 11 2024

Exports:computeApproxNormSquaredEigenvectorcomputeResidualMatrixeespcaeespcaCVeespcaForKpowerIterationreconstructreconstructionErrorrifleInitriflePCACVtpowertpowerPCACV

Dependencies:MASSPMArifle

EESPCA example

Rendered fromEESPCA_Example.Rnwusingutils::Sweaveon Nov 11 2024.

Last update: 2021-07-16
Started: 2021-07-16