Package: bartMan 0.1.1

Alan Inglis

bartMan: Create Visualisations for BART Models

Investigating and visualising Bayesian Additive Regression Tree (BART) (Chipman, H. A., George, E. I., & McCulloch, R. E. 2010) <doi:10.1214/09-AOAS285> model fits. We construct conventional plots to analyze a model’s performance and stability as well as create new tree-based plots to analyze variable importance, interaction, and tree structure. We employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that display variable importance and interactions jointly using colour scale to represent posterior uncertainty. Our visualisations are designed to work with the most popular BART R packages available, namely 'BART' Rodney Sparapani and Charles Spanbauer and Robert McCulloch 2021 <doi:10.18637/jss.v097.i01>, 'dbarts' (Vincent Dorie 2023) <https://CRAN.R-project.org/package=dbarts>, and 'bartMachine' (Adam Kapelner and Justin Bleich 2016) <doi:10.18637/jss.v070.i04>.

Authors:Alan Inglis [aut, cre], Andrew Parnell [aut], Catherine Hurley [aut], Claus Wilke [ctb]

bartMan_0.1.1.tar.gz
bartMan_0.1.1.tar.gz(r-4.5-noble)bartMan_0.1.1.tar.gz(r-4.4-noble)
bartMan_0.1.1.tgz(r-4.4-emscripten)bartMan_0.1.1.tgz(r-4.3-emscripten)
bartMan.pdf |bartMan.html
bartMan/json (API)

# Install 'bartMan' in R:
install.packages('bartMan', repos = 'https://cloud.r-project.org')
Uses libs:
  • openjdk– OpenJDK Java runtime, using Hotspot JIT
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

openjdk

2.00 score 253 downloads 40 exports 127 dependencies

Last updated 8 months agofrom:e5c750c705. Checks:2 OK, 1 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 22 2025
R-4.5-linuxNOTEMar 22 2025
R-4.4-linuxOKMar 22 2025

Exports:acceptRatebartClassifDiagbartDiagbartRegrDiagbivariate_rangebivariate_scaleclusterTreescombineDummyextractTreeDatagetChildrengetObservationsguide_colorfanguide_colourfanlocalProceduremdsBartnode_depthpal_vsuppermVimppermVintplotProximityplotSingleTreeplotTreesproximityMatrixRangeBivariateScaleBivariatesort_trees_by_depthMaxsplitDensityterminalFunctiontrain_bivariatetree_dataframetreeBarPlottreeDepthtreeListtreeNodesvimpBartvimpPlotvintPlotviviBartviviBartMatrixviviBartPlot

Dependencies:abindarrayhelpersbackportsBARTbartMachinebartMachineJARsbase64encbitbit64bslibcacachemcheckmateclicliprclustercodacodetoolscolorspacecowplotcpp11crayondbartsDendSerdigestdistributionaldoRNGdplyrevaluatefansifarverfastmapfontawesomeforeachfsgclusgenericsggdistggforceggiraphggnewscaleggplot2ggraphggrepelgluegraphlayoutsgridExtragtablehighrhmshtmltoolshtmlwidgetsigraphisobanditeratorsitertoolsjquerylibjsonliteknitrlabelinglatticelifecyclemagrittrMASSMatrixmatrixStatsmemoisemgcvmimemissForestmunsellnlmenumDerivpatchworkpermutepillarpkgconfigpolyclipposteriorprettyunitsprogresspurrrqapquadprogR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppEigenreadrregistryrJavarlangrmarkdownrngtoolsrrapplysassscalesseriationstringistringrsurvivalsvUnitsystemfontstensorAtibbletidybayestidygraphtidyrtidyselecttidytreatmenttinytexTSPtweenrtzdbutf8uuidvctrsveganviridisviridisLitevroomwithrxfunyaml

Citation

To cite package ‘bartMan’ in publications use:

Inglis A, Parnell A, Hurley C (2024). bartMan: Create Visualisations for BART Models. R package version 0.1.1, https://CRAN.R-project.org/package=bartMan.

Corresponding BibTeX entry:

  @Manual{,
    title = {bartMan: Create Visualisations for BART Models},
    author = {Alan Inglis and Andrew Parnell and Catherine Hurley},
    year = {2024},
    note = {R package version 0.1.1},
    url = {https://CRAN.R-project.org/package=bartMan},
  }

Readme and manuals

bartMan

For more detailed information and a comprehensive discussion, please refer to our paper associated with this document, available here:

https://doi.org/10.52933/jdssv.v4i1.79

bartMan is an R-package for investigating and visualising Bayesian Additive Regression Tree (BART) model fits. We construct conventional plots to analyze a model’s performance and stability as well as create new tree-based plots to analyze variable importance, interaction, and tree structure. We employ Value Suppressing Uncertainty Palettes (VSUP) to construct heatmaps that display variable importance and interactions jointly using color scale to represent posterior uncertainty. Our visualizations are designed to work with the most popular BART R packages available, namely BART, dbarts, and bartMachine. A practical example of the package in use can be found in our detailed vignette.

Installation

You can install the released version of bartMan from CRAN with:

install.packages("bartMan")

And the development version from GitHub with:

# install.packages("devtools")
devtools::install_github("AlanInglis/bartMan")

You can then load the package with:

library(bartMan)

Help Manual

Help pageTopics
acceptRateacceptRate
bartClassifDiagbartClassifDiag
bartDiagbartDiag
bartRegrDiagbartRegrDiag
Cluster Trees by VariableclusterTrees
Update Dummy Variable NamescombineDummy
extractTreeDataextractTreeData
Determines the stump color for a legend based on its mean valueget_stump_colour_for_legend
Generate Child and Parent Node RelationshipsgetChildren
Get Observations Falling into Each NodegetObservations
Colourfan guideguide_colorfan guide_colourfan
input_datainput_data
localProcedurelocalProcedure
mdsBartmdsBart
Calculate Node Depths in a Tree Data Framenode_depth
Variance suppressing uncertainty palettepal_vsup
permVimppermVimp
permVintpermVint
plotProximityplotProximity
plotSingleTreeplotSingleTree
Plot Trees with CustomisationsplotTrees
print.hideHelperprint.hideHelper1
proximityMatrixproximityMatrix
Constructor for bivariate range objectbivariate_range RangeBivariate
Constructor for bivariate scale objectbivariate_scale ScaleBivariate
Sort Trees by Maximum Depthsort_trees_by_depthMax
splitDensitysplitDensity
Generate Terminal Node IndicatorterminalFunction
Train range for bivariate scaletrain_bivariate
tree_data_exampletree_data_example
Transform tree data into a structured dataframetree_dataframe
Plot Frequency of Tree StructurestreeBarPlot
treeDepthtreeDepth
Generate a List of Tree Structures from BART Model OutputtreeList
treeNodestreeNodes
vimpBartvimpBart
vimpPlotvimpPlot
vintPlotvintPlot
viviBartviviBart
viviBartMatrixviviBartMatrix
viviBartPlotviviBartPlot