Package: lsm 0.2.1.4
Jorge Villalba
lsm: Estimation of the log Likelihood of the Saturated Model
When the values of the outcome variable Y are either 0 or 1, the function lsm() calculates the estimation of the log likelihood in the saturated model. This model is characterized by Llinas (2006, ISSN:2389-8976) in section 2.3 through the assumptions 1 and 2. The function LogLik() works (almost perfectly) when the number of independent variables K is high, but for small K it calculates wrong values in some cases. For this reason, when Y is dichotomous and the data are grouped in J populations, it is recommended to use the function lsm() because it works very well for all K.
Authors:
lsm_0.2.1.4.tar.gz
lsm_0.2.1.4.tar.gz(r-4.5-noble)lsm_0.2.1.4.tar.gz(r-4.4-noble)
lsm_0.2.1.4.tgz(r-4.4-emscripten)lsm_0.2.1.4.tgz(r-4.3-emscripten)
lsm.pdf |lsm.html✨
lsm/json (API)
# Install 'lsm' in R: |
install.packages('lsm', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org')) |
This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.
Last updated 6 months agofrom:2401bb9f81. Checks:OK: 2. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 06 2024 |
R-4.5-linux | OK | Nov 06 2024 |
Exports:lsm
Dependencies:clicolorspacedplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbletidyselectutf8vctrsviridisLitewithr
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Coronary Heart Disease Study | chdage |
Confidence Intervals for 'lsm' Objects | confint.lsm |
icu | icu |
lowbwt | lowbwt |
Estimation of the log Likelihood of the Saturated Model | lsm |
Graphics Method for 'lsm' Objects | plot.lsm |
Predictions and Confidence intervals | predict.lsm |
pros | pros |
Summarizing Method for 'lsm' Objects | summary.lsm |
survey | survey |
uis | uis |