Package: lsm 0.2.1.4

Jorge Villalba

lsm: Estimation of the log Likelihood of the Saturated Model

When the values of the outcome variable Y are either 0 or 1, the function lsm() calculates the estimation of the log likelihood in the saturated model. This model is characterized by Llinas (2006, ISSN:2389-8976) in section 2.3 through the assumptions 1 and 2. The function LogLik() works (almost perfectly) when the number of independent variables K is high, but for small K it calculates wrong values in some cases. For this reason, when Y is dichotomous and the data are grouped in J populations, it is recommended to use the function lsm() because it works very well for all K.

Authors:Jorge Villalba [aut, cre], Humberto Llinas [aut], Omar Fabregas [aut]

lsm_0.2.1.4.tar.gz
lsm_0.2.1.4.tar.gz(r-4.5-noble)lsm_0.2.1.4.tar.gz(r-4.4-noble)
lsm_0.2.1.4.tgz(r-4.4-emscripten)lsm_0.2.1.4.tgz(r-4.3-emscripten)
lsm.pdf |lsm.html
lsm/json (API)

# Install 'lsm' in R:
install.packages('lsm', repos = 'https://cloud.r-project.org')
Datasets:

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.48 score 376 downloads 6 mentions 1 exports 31 dependencies

Last updated 10 months agofrom:2401bb9f81. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 06 2025
R-4.5-linuxOKMar 06 2025
R-4.4-linuxOKMar 06 2025

Exports:lsm

Dependencies:clicolorspacedplyrfansifarvergenericsggplot2gluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigR6RColorBrewerrlangscalestibbletidyselectutf8vctrsviridisLitewithr

Citation

To cite lsm in publications please use:

Jorge L. Villalba, Humberto J. Llinas, Omar J. Fabregas (2024). lsm: Estimation of the log Likelihood of the Saturated Model R package version 0.2.1.4. URL https://CRAN.R-project.org/package=lsm

Corresponding BibTeX entry:

  @Manual{lsm-package,
    title = {{lsm}: Estimation of the log Likelihood of the Saturated
      Model},
    author = {Jorge L. Villalba and Humberto J. Llinas and Omar J.
      Fabregas},
    year = {2024},
    note = {R package version 0.2.1.4},
    url = {https://CRAN.R-project.org/package=lsm},
  }

Readme and manuals

lsm()lsm()

Welcome to the lsm package!lsm

When the values of the outcome variable Y are either 0 or 1, the function calculates the estimation of the log likelihood in the saturated model. This model is characterized by Llinas (2006, ISSN:2389-8976) in section 2.3 through the assumptions 1 and 2. If is dichotomous and the data are grouped in J populations, it is recommended to use the function because it works very well for all .

Details

The saturated model is characterized by the assumptions 1 and 2 presented in section 2.3 by Llinas (2006, ISSN:2389-8976).

Installation

install.packages("lsm")
library(lsm)

Example Usage

Hosmer, D. (2013) page 3: Age and coranary Heart Disease (CHD) Status of 20 subjects:

library(lsm)

  AGE <- c(20,23,24,25,25,26,26,28,28,29,30,30,30,30,30,30,30,32,33,33)
  CHD <- c(0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0)
  
  data <- data.frame (CHD,  AGE )
  lsm(CHD ~ AGE , family=binomial, data)
  
  ## For more ease, use the following notation.
  
  lsm(y~., data)

Other case.

   y <- c(1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1)
  x1 <- c(2, 2, 2, 5, 5, 5, 5, 8, 8, 11, 11, 11)
 
  data <- data.frame (y, x1)
  ELAINYS <-lsm(y ~ x1, family=binomial, data)
  summary(ELAINYS)

Other case.


  y <- as.factor(c(1, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1))
  x1 <- as.factor(c(2, 2, 2, 5, 5, 5, 5, 8, 8, 11, 11, 11))
 
  data <- data.frame (y, x1)
  ELAINYS1 <-lsm(y ~ x1, family=binomial, data)
  confint(ELAINYS1)

References

[1] Humberto Jesus Llinas. (2006). Accuracies in the theory of the logistic models. Revista Colombiana De Estadistica,29(2), 242-244.

[2] Hosmer, D. (2013). Wiley Series in Probability and Statistics Ser. : Applied Logistic Regression (3). New York: John Wiley & Sons, Incorporated.

[3] Chambers, J. M. and Hastie, T. J. (1992) Statistical Models in S. Wadsworth & Brooks/Cole.

Author(s)

Humberto Llinas Solano [aut], Universidad del Norte, Barranquilla-Colombia \ Omar Fabregas Cera [aut], Universidad del Norte, Barranquilla-Colombia \ Jorge Villalba Acevedo [cre, aut], Universidad Tecnológica de Bolívar, Cartagena-Colombia.


If you found any ERRORS or have SUGGESTIONS, please report them to my email. Thanks.