Package: DTWBI 1.1

Emilie Poisson-Caillault

DTWBI: Imputation of Time Series Based on Dynamic Time Warping

Functions to impute large gaps within time series based on Dynamic Time Warping methods. It contains all required functions to create large missing consecutive values within time series and to fill them, according to the paper Phan et al. (2017), <doi:10.1016/j.patrec.2017.08.019>. Performance criteria are added to compare similarity between two signals (query and reference).

Authors:Camille Dezecache, T. T. Hong Phan, Emilie Poisson-Caillault

DTWBI_1.1.tar.gz
DTWBI_1.1.tar.gz(r-4.5-noble)DTWBI_1.1.tar.gz(r-4.4-noble)
DTWBI_1.1.tgz(r-4.4-emscripten)DTWBI_1.1.tgz(r-4.3-emscripten)
DTWBI.pdf |DTWBI.html
DTWBI/json (API)

# Install 'DTWBI' in R:
install.packages('DTWBI', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • dataDTWBI - Six univariate signals as example for DTWBI package

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

2.30 score 1 packages 67 scripts 180 downloads 11 exports 13 dependencies

Last updated 6 years agofrom:022fabcc17. Checks:OK: 1 NOTE: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 07 2024
R-4.5-linuxNOTENov 07 2024

Exports:compute.fa2compute.fbcompute.fsdcompute.nmaecompute.rmsecompute.simdist_afbdtwDTWBI_univariategapCreationlocal.derivative.ddtwminCost

Dependencies:classdata.tabledtwe1071entropyjsonlitelsaMASSproxyrlistSnowballCXMLyaml