Package: DTWBI 1.1

Emilie Poisson-Caillault

DTWBI: Imputation of Time Series Based on Dynamic Time Warping

Functions to impute large gaps within time series based on Dynamic Time Warping methods. It contains all required functions to create large missing consecutive values within time series and to fill them, according to the paper Phan et al. (2017), <doi:10.1016/j.patrec.2017.08.019>. Performance criteria are added to compare similarity between two signals (query and reference).

Authors:Camille Dezecache, T. T. Hong Phan, Emilie Poisson-Caillault

DTWBI_1.1.tar.gz
DTWBI_1.1.tar.gz(r-4.5-noble)DTWBI_1.1.tar.gz(r-4.4-noble)
DTWBI_1.1.tgz(r-4.4-emscripten)DTWBI_1.1.tgz(r-4.3-emscripten)
DTWBI.pdf |DTWBI.html
DTWBI/json (API)

# Install 'DTWBI' in R:
install.packages('DTWBI', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))
Datasets:
  • dataDTWBI - Six univariate signals as example for DTWBI package

On CRAN:

Conda:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.48 score 1 packages 238 downloads 11 exports 13 dependencies

Last updated 7 years agofrom:022fabcc17. Checks:1 OK, 2 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 07 2025
R-4.5-linuxNOTEMar 07 2025
R-4.4-linuxNOTEMar 07 2025

Exports:compute.fa2compute.fbcompute.fsdcompute.nmaecompute.rmsecompute.simdist_afbdtwDTWBI_univariategapCreationlocal.derivative.ddtwminCost

Dependencies:classdata.tabledtwe1071entropyjsonlitelsaMASSproxyrlistSnowballCXMLyaml