Package: UNPaC 1.1.1

Erika S. Helgeson

UNPaC: Non-Parametric Cluster Significance Testing with Reference to a Unimodal Null Distribution

Assess the significance of identified clusters and estimates the true number of clusters by comparing the explained variation due to the clustering from the original data to that produced by clustering a unimodal reference distribution which preserves the covariance structure in the data. The reference distribution is generated using kernel density estimation and a Gaussian copula framework. A dimension reduction strategy and sparse covariance estimation optimize this method for the high-dimensional, low-sample size setting. This method is described in Helgeson, Vock, and Bair (2021) <doi:10.1111/biom.13376>.

Authors:Erika S. Helgeson, David Vock, and Eric Bair

UNPaC_1.1.1.tar.gz
UNPaC_1.1.1.tar.gz(r-4.5-noble)UNPaC_1.1.1.tar.gz(r-4.4-noble)
UNPaC_1.1.1.tgz(r-4.4-emscripten)UNPaC_1.1.1.tgz(r-4.3-emscripten)
UNPaC.pdf |UNPaC.html
UNPaC/json (API)

# Install 'UNPaC' in R:
install.packages('UNPaC', repos = c('https://cran.r-universe.dev', 'https://cloud.r-project.org'))

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 171 downloads 2 exports 16 dependencies

Last updated 3 years agofrom:ddc440c54e. Checks:1 OK, 1 NOTE. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 29 2025
R-4.5-linuxNOTEJan 29 2025

Exports:UNPaC_CopulaUNPaC_num_clust

Dependencies:clicpp11gluehugeigraphlatticelifecyclemagrittrMASSMatrixPDSCEpkgconfigRcppRcppEigenrlangvctrs