Package: fGarch 4033.92

Georgi N. Boshnakov

fGarch: Rmetrics - Autoregressive Conditional Heteroskedastic Modelling

Analyze and model heteroskedastic behavior in financial time series.

Authors:Diethelm Wuertz [aut], Yohan Chalabi [aut], Tobias Setz [aut], Martin Maechler [aut], Chris Boudt [ctb], Pierre Chausse [ctb], Michal Miklovac [ctb], Georgi N. Boshnakov [aut, cre]

fGarch_4033.92.tar.gz
fGarch_4033.92.tar.gz(r-4.5-noble)fGarch_4033.92.tar.gz(r-4.4-noble)
fGarch_4033.92.tgz(r-4.4-emscripten)fGarch_4033.92.tgz(r-4.3-emscripten)
fGarch.pdf |fGarch.html
fGarch/json (API)
NEWS

# Install 'fGarch' in R:
install.packages('fGarch', repos = 'https://cloud.r-project.org')

Bug tracker:https://github.com/geobosh/fgarchdoc/issues0 issues

Pkgdown site:https://geobosh.github.io

Datasets:

On CRAN:

Conda:r-fgarch-4033.92(2025-03-25)

fortran

6.33 score 7 stars 51 packages 13k downloads 3 mentions 52 exports 14 dependencies

Last updated 1 years agofrom:4bec24cf5b. Checks:3 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKMar 22 2025
R-4.5-linux-x86_64OKMar 22 2025
R-4.4-linux-x86_64OKMar 22 2025

Exports:.gogarchFit.ugarchFit.ugarchSpecabsMomentscoefdgeddsgeddsnormdsstddstdESfittedformulagarchFitgarchFitControlgarchKappagarchSimgarchSpecgedFitgedSliderpgedplotpredictpsgedpsnormpsstdpstdqgedqsgedqsnormqsstdqstdresidualsrgedrsgedrsnormrsstdrstdsgedFitsgedSlidershowsnormFitsnormSlidersstdFitsstdSliderstdFitstdSlidersummarytimeSeriesupdateVaRvolatility

Dependencies:cvarfastICAfBasicsgbutilsgsslatticeMASSMatrixrbibutilsRdpackspatialstabledisttimeDatetimeSeries

Citation

To cite package ‘fGarch’ in publications use:

Wuertz D, Chalabi Y, Setz T, Maechler M, Boshnakov GN (2024). fGarch: Rmetrics - Autoregressive Conditional Heteroskedastic Modelling. R package version 4033.92, https://CRAN.R-project.org/package=fGarch.

Corresponding BibTeX entry:

  @Manual{,
    title = {fGarch: Rmetrics - Autoregressive Conditional
      Heteroskedastic Modelling},
    author = {Diethelm Wuertz and Yohan Chalabi and Tobias Setz and
      Martin Maechler and Georgi N. Boshnakov},
    year = {2024},
    note = {R package version 4033.92},
    url = {https://CRAN.R-project.org/package=fGarch},
  }

Readme and manuals

Analyze and model heteroskedastic behavior in financial time series with GARCH, APARCH and related models.

Package fGarch is part of the Rmetrics suite of R packages and is developed on R-forge at fGarch devel. The root of Rmetrics is at R-forge.

Installing fGarch

Install the latest stable version of fGarch from CRAN:

install.packages("fGarch")

You can install the development version of fGarch from R-forge:

install.packages("fGarch", repos = "http://R-Forge.R-project.org")

To report bugs visit Rmetrics.

Documentation

You can view the documentation of fGarch at fGarchDoc or download the reference manual of the latest release from CRAN.

A comprehensive overview of the models and conditional distributions employed in package fGarch, along with worked examples, is available in the following paper by the original authors of the package:

WurtzEtAlGarch.pdf.

(This is an unpublished manuscript. Some online sources, confusingly, attribute it to JSS, vol 55, issue 2, but this seems to have taken the placeholders VV and II in the heading on the first page as being the Roman numbers 55 and 2.)

Help Manual

Help pageTopics
Modelling heterskedasticity in financial time seriesfGarch-package fGarch
Absolute moments of GARCH distributionsabsMoments
GARCH coefficients methodscoef coef,fGARCH-method coef,fGARCHSPEC-method coef-methods
Class "fGARCH"fGARCH-class show,fGARCH-method update,fGARCH-method
Time series datasetsdem2gbp fGarchData sp500dge
Class "fGARCHSPEC"fGARCHSPEC-class show,fGARCHSPEC-method update,fGARCHSPEC-method
Extract GARCH model fitted valuesfitted fitted,fGARCH-method fitted-methods
Extract GARCH model formulaformula formula,fGARCH-method formula-methods
Class 'fUGARCHSPEC'.ugarchFit .ugarchSpec fUGARCHSPEC-class
Univariate or multivariate GARCH time series fitting.gogarchFit garchFit garchKappa
Control GARCH fitting algorithmsgarchFitControl
Simulate univariate GARCH/APARCH time seriesgarchSim
Univariate GARCH/APARCH time series specificationgarchSpec
Standardized generalized error distributiondged ged pged qged rged
Generalized error distribution parameter estimationgedFit
Generalized error distribution slidergedSlider
GARCH plot methodsplot plot,fGARCH,missing-method plot-methods
GARCH prediction functionpredict predict,fGARCH-method predict-methods
Extract GARCH model residualsresiduals residuals,fGARCH-method residuals-methods
Skew generalized error distributiondsged psged qsged rsged sged
Skew generalized error distribution parameter estimationsgedFit
Skew GED distribution slidersgedSlider
Skew normal distributiondsnorm psnorm qsnorm rsnorm snorm
Skew normal distribution parameter estimationsnormFit
Skew normal distribution slidersnormSlider
Skew Student-t distributiondsstd psstd qsstd rsstd sstd
Skew Student-t distribution parameter estimationsstdFit
Skew Student-t distribution slidersstdSlider
Diagnostic plots and statistics for fitted GARCH modelsstats-tsdiag tsdiag tsdiag.fGARCH
Standardized Student-t distributiondstd pstd qstd rstd std
Student-t distribution parameter estimationstdFit
Student-t distribution sliderstdSlider
GARCH summary methodssummary summary,fGARCH-method summary-methods
Compute Value-at-Risk (VaR) and expected shortfall (ES)ES ES.fGARCH VaR VaR.fGARCH
Extract GARCH model volatilityvolatility volatility.fGARCH